...
首页> 外文期刊>Global change biology >Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: a radiocarbon-based approach
【24h】

Quantitative aspects of heterogeneity in soil organic matter dynamics in a cool-temperate Japanese beech forest: a radiocarbon-based approach

机译:低温日本山毛榉森林土壤有机质动态异质性的定量方面:一种基于放射性碳的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Soil is the largest carbon reservoir in terrestrial ecosystems; it stores twice as much carbon as the atmosphere. It is well documented that global warming can lead to accelerated microbial decomposition of soil organic carbon (SOC) and enhance the release of CO from the soil to the atmosphere; however, the magnitude and timing of this effect remain highly uncertain due to a lack of quantitative data concerning the heterogeneity of SOC biodegradability. Therefore, we sought to identify SOC pools with respect to their specific mean residence times (MRTs), to use those SOC pools to partition soil respiration sources, and to estimate the potential response of the pools to warming. We collected surface soil and litter samples from a cool-temperate deciduous forest in Japan, chemically separated the samples into SOC fractions, estimated their MRTs based on radiocarbon (p#tC) isotope measurements, and used the data to construct a model representing the soil as a complex of six SOC pools with different MRT ranges. We estimate that a minor, fast-cycling SOC pool with an MRT of less than 10 years (corresponding to the O horizon and recognizable plant leaf fragments in the A1 horizon) is responsible for 73% of annual heterotrophic respiration and 44% of total soil respiration. However, the predicted response of these pools to warming demonstrates that the rate of SOC loss from the fast-cycling SOC pool diminishes quickly (within several decades) because of limited substrate availability. In contrast, warming will continue to accelerate SOC loss from slow-cycling pools with MRTs of 20-200 years over the next century. Although using a p#tC-based approach has drawbacks, these estimates provide quantitative insights into the potential importance of slow-cycling SOC dynamics for the prediction of positive feedback to climate change.
机译:土壤是陆地生态系统中最大的碳库。它储存的碳是大气的两倍。有充分的证据表明,全球变暖可导致土壤中有机碳(SOC)的微生物分解加速,并增加CO从土壤向大气的释放;然而,由于缺乏有关SOC生物降解能力异质性的定量数据,这种影响的程度和时机仍然高度不确定。因此,我们试图确定相对于其特定平均停留时间(MRT)的SOC库,以使用这些SOC库来分配土壤呼吸源,并估计池对变暖的潜在响应。我们从日本的温带落叶林中收集了表层土壤和垃圾样品,将其化学分离成SOC组分,并根据放射性碳(p#tC)同位素测量估算了其MRT,并使用这些数据构建了代表土壤的模型由六个具有不同MRT范围的SOC池组成。我们估计,MRT小于10年(对应于O层和A1层中可识别的植物叶片碎片)的次要,快速循环的SOC池占73%的年度异养呼吸和44%的土壤总量呼吸。但是,这些池对变暖的预测响应表明,由于有限的基板可用性,快速循环SOC池中的SOC损失速率迅速减小(几十年之内)。相反,在下一世纪,变暖将继续加速20-200年MRT的慢循环池中的SOC损失。尽管使用基于p#tC的方法有弊端,但这些估计值提供了对慢循环SOC动力学对预测气候变化正反馈的潜在重要性的定量见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号