...
首页> 外文期刊>Global change biology >Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms
【24h】

Nonlinear root-derived carbon sequestration across a gradient of nitrogen and phosphorous deposition in experimental mesocosms

机译:在实验中膜中氮和磷沉积的梯度上非线性根源固碳

获取原文
获取原文并翻译 | 示例
           

摘要

Enhanced sequestration of plant-carbon (C) inputs to soil may mitigate rising atmospheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N) and phosphorous (P) deposition is uncertain. We couple isotope, soil C fractionation and mesocosm techniques to assess the sequestration of plant-C inputs, and their partitioning into C pools with different sink potentials, under an experimental gradient of N and P deposition (0, 10, 30, 60 and 100 kg N ha(-1) yr(-1); and 0, 2, 6, 12 and 20 kg P ha(-1) yr(-1)). We hypothesized that N deposition would increase sequestration, with the majority of the C being sequestered in faster cycling soil pools because N deposition has been shown to accelerate the turnover of these pools while decelerating the turnover of slower cycling pools. In contrast to this hypothesis, sequestration into all soil C pools peaked at intermediate levels of N deposition. Given that P amendment has been shown to cause a net loss of soil C, we postulated that P deposition would decrease sequestration. This expectation was not supported by our data, with sequestration generally being greater under P deposition. When soils were amended simultaneously with N and P, neither the shape of the sequestration relationship across the deposition gradient, nor the observed sequestration at the majority of the deposition rates, was statistically predictable from the effects of N and P in isolation. The profound nonlinearities we observed, both for total sequestration responses and the partitioning of C into soil pools with different sink potentials, suggests that the rates of N and P deposition to ecosystems will be the critical determinant of whether they enhance or decrease the long-term sequestration of fresh plant-C inputs to soils.
机译:加强对土壤中植物碳(C)输入的固存可能减轻大气中二氧化碳(CO2)浓度的升高和相关的气候变化,但是这种固存将如何响应人为氮(N)和磷(P)的沉积尚不确定。我们结合同位素,土壤C分馏和中观宇宙技术来评估植物C输入的螯合以及在N和P沉积的实验梯度(0、10、30、60和100的实验梯度下,将其划分为具有不同吸收电位的C库) kg N ha(-1)yr(-1);以及0、2、6、12和20 kg P ha(-1)yr(-1))。我们假设氮的沉积会增加螯合,大部分C被螯合在较快循环的土壤池中,因为已显示N沉积会加速这些池的周转,同时会减慢较慢循环的池的周转。与此假设相反,对所有土壤碳库的固存在氮沉降的中间水平达到峰值。鉴于已表明P修正会导致土壤C的净损失,我们推测P的沉积会减少固存。我们的数据不支持这种期望,在P沉积下,固存通常更大。当土壤与氮和磷同时改良时,无论是从沉积梯度上的固存关系的形状,还是在大部分沉积速率下观察到的固存,都无法从氮和磷的影响上进行统计学预测。我们观察到的深刻的非线性,无论是总螯合反应还是将C分配到具有不同汇电位的土壤池中,都表明氮和磷在生态系统中的沉积速率将决定它们长期增加还是减少的关键因素。螯合新鲜的植物碳输入土壤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号