...
首页> 外文期刊>Global change biology >Foliar respiration acclimation to temperature and temperature variable Q(10) alter ecosystem carbon balance
【24h】

Foliar respiration acclimation to temperature and temperature variable Q(10) alter ecosystem carbon balance

机译:温度和温度变量Q(10)的叶面呼吸适应改变生态系统的碳平衡

获取原文
获取原文并翻译 | 示例
           

摘要

The response of respiration to temperature in plants can be considered at both short- and long-term temporal scales. Short-term temperature responses are not well described by a constant Q(10) of respiration, and longer-term responses often include acclimation. Despite this, many carbon balance models use a static Q(10) of respiration to describe the short-term temperature response and ignore temperature acclimation.We replaced static respiration parameters in the ecosystem model photosynthesis and evapo-transpiration (PnET) with a temperature-driven basal respiration algorithm (Rd(acclim)) that accounts for temperature acclimation, and a temperature-variable Q(10) algorithm (Q(10var)). We ran PnET with the new algorithms individually and in combination for 5 years across a range of sites and vegetation types in order to examine the new algorithms' effects on modeled rates of mass- and area-based foliar dark respiration, above ground net primary production (ANPP), and foliar respiration-photosynthesis ratios.The Rd(acclim) algorithm adjusted dark respiration downwards at temperatures above 18 degrees C, and adjusted rates up at temperatures below 5 degrees C. The Q(10var) algorithm adjusted dark respiration down at temperatures below 15 degrees C. Using both algorithms simultaneously resulted in decreases in predicted annual foliar respiration that ranged from 31% at a tall-grass prairie site to 41% at a boreal coniferous site. The use of the Rd(acclim) and Q(10var) algorithms resulted in increases in predicted ANPP ranging from 18% at the tall-grass prairie site to 38% at a warm temperate hardwood forest site.The new foliar respiration algorithms resulted in substantial and variable effects on PnETs predicted estimates of C exchange and production in plants and ecosystems. Current models that use static parameters may over-predict respiration and subsequently under-predict and/or inappropriately allocate productivity estimates. Incorporating acclimation of basal respiration and temperature-sensitive Q(10) have the potential to enhance the application of ecosystem models across broad spatial scales, or in climate change scenarios, where large temperature ranges may cause static respiration parameters to yield misleading results.
机译:可以在短期和长期的时间尺度上考虑植物对呼吸的响应。恒定的呼吸Q(10)不能很好地描述短期温度响应,而长期响应通常包括适应。尽管如此,许多碳平衡模型还是使用静态Q(10)呼吸来描述短期温度响应,而忽略了温度驯化。我们用温度-代替了生态系统模型光合作用和蒸发蒸腾(PnET)中的静态呼吸参数。驱动的基础呼吸算法(Rd(acclim))和温度可变的Q(10)算法(Q(10var)),该算法可解决温度适应问题。我们分别使用新算法和PnET在一系列站点和植被类型中组合运行了5年,以检验新算法对高于地面净初级生产力的基于质量和面积的叶面暗呼吸速率的影响(ANPP)和叶面呼吸-光合作用比率.Rd(acclim)算法在高于18摄氏度的温度下向下调节暗呼吸,而在低于5摄氏度的温度下向上调节黑呼吸速率.Q(10var)算法在25摄氏度以下下调暗呼吸。温度低于15摄氏度。同时使用这两种算法,导致预测的年度叶面呼吸的减少范围从高草草原站点的31%到北方针叶树站点的41%。使用Rd(acclim)和Q(10var)算法可以使预测的ANPP值从高草草原站点的18%增长到温带温带阔叶林站点的38%。以及对PnETs的可变影响,预测了植物和生态系统中碳交换和生产的估计值。当前使用静态参数的模型可能会过度预测呼吸,随后可能会预测不足和/或不适当地分配生产率估算值。结合基础呼吸的适应性和对温度敏感的Q(10)有潜力在较宽的空间范围内或在气候变化场景中增强生态系统模型的应用,在这些场景中,较大的温度范围可能会导致静态呼吸参数产生误导性的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号