...
首页> 外文期刊>Global change biology >How do elevated CO2 and O-3 affect the interception and utilization of radiation by a soybean canopy?
【24h】

How do elevated CO2 and O-3 affect the interception and utilization of radiation by a soybean canopy?

机译:升高的CO2和O-3如何影响大豆冠层对辐射的拦截和利用?

获取原文
获取原文并翻译 | 示例
           

摘要

Net productivity of vegetation is determined by the product of the efficiencies with which it intercepts light (epsilon(i)) and converts that intercepted energy into biomass (epsilon(c)). Elevated carbon dioxide (CO2) increases photosynthesis and leaf area index (LAI) of soybeans and thus may increase epsilon(i) and epsilon(c); elevated O-3 may have the opposite effect. Knowing if elevated CO2 and O-3 differentially affect physiological more than structural components of the ecosystem may reveal how these elements of global change will ultimately alter productivity. The effects of elevated CO2 and O-3 on an intact soybean ecosystem were examined with Soybean Free Air Concentration Enrichment (SoyFACE) technology where large field plots (20-m diameter) were exposed to elevated CO2 (similar to 550 mu mol mol(-1)) and elevated O-3 (1.2 x ambient) in a factorial design. Aboveground biomass, LAI and light interception were measured during the growing seasons of 2002, 2003 and 2004 to calculate epsilon(i) and epsilon(c). A 15% increase in yield (averaged over 3 years) under elevated CO2 was caused primarily by a 12% stimulation in epsilon(c) , as epsilon(i) increased by only 3%. Though accelerated canopy senescence under elevated O-3 caused a 3% decrease in epsilon(i), the primary effect of O-3 on biomass was through an 11% reduction in epsilon(c). When CO2 and O-3 were elevated in combination, CO2 partially reduced the negative effects of elevated O-3. Knowing that changes in productivity in elevated CO2 and O-3 were influenced strongly by the efficiency of conversion of light energy into energy in plant biomass will aid in optimizing soybean yields in the future. Future modeling efforts that rely on epsilon(c) for calculating regional and global plant productivity will need to accommodate the effects of global change on this important ecosystem attribute.
机译:植被的净生产力由其拦截光(ε(i))并将拦截的能量转换为生物质(ε(c))的乘积确定。升高的二氧化碳(CO2)会增加大豆的光合作用和叶面积指数(LAI),因此可能会增加epsilon(i)和epsilon(c);升高的O-3可能具有相反的效果。知道升高的CO2和O-3是否对生态系统的生理影响大于对生态系统结构的影响,可能揭示了全球变化的这些要素最终将如何改变生产力。使用大豆自由空气浓缩富集(SoyFACE)技术检查了CO2和O-3升高对完整大豆生态系统的影响,该技术将大田地(直径20米)暴露于升高的CO2(约550μmolmol(- 1))并在析因设计中提高了O-3(1.2 x环境)。在2002年,2003年和2004年的生长季节中,对地上生物量,LAI和光拦截进行了测量,以计算出ε(i)和ε(c)。在二氧化碳升高的情况下,产量的增加(平均3年)增加了15%,这主要是由于epsilon(c)受到12%的刺激,因为epsilon(i)仅增加了3%。尽管在升高的O-3下加速冠层衰老会导致epsilon(i)降低3%,但O-3对生物量的主要影响是通过epsilon(c)降低11%。当CO2和O-3组合升高时,CO2部分减轻了升高的O-3的负面影响。知道提高的CO2和O-3生产率的变化会受到光能转化为植物生物质能的效率的强烈影响,这将有助于将来优化大豆产量。依靠epsilon(c)来计算区域和全球植物生产力的未来建模工作将需要适应全球变化对这一重要生态系统属性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号