...
首页> 外文期刊>Global change biology >Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus
【24h】

Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus

机译:土壤温度影响丛枝菌根网络中的碳分配以及植物到真菌的碳迁移

获取原文
获取原文并翻译 | 示例
           

摘要

How soil carbon balance will be affected by plant-mycorrhizal interactions under future climate scenarios remains a significant unknown in our ability to forecast ecosystem carbon storage and fluxes. We examined the effects of soil temperature (14, 20, 26 degrees C) on the structure and extent of a multispecies community of arbuscular mycorrhizal (AM) fungi associated with Plantago lanceolata. To isolate fungi from roots, we used a mesh-divided pot system with separate hyphal compartments near and away from the plant. A C-13 pulse label was then used to trace the flow of recently fixed photosynthate from plants into belowground pools and respiration. Temperature significantly altered the structure and allocation of the AM hyphal network, with a switch from more vesicles (storage) in cooled soils to more extensive extraradical hyphal networks (growth) in warmed soils. As soil temperature increased, we also observed an increase in the speed at which plant photosynthate was transferred to and respired by roots and AM fungi coupled with an increase in the amount of carbon respired per unit hyphal length. These differences were largely independent of plant size and rates of photosynthesis. In a warmer world, we would therefore expect more carbon losses to the atmosphere from AM fungal respiration, which are unlikely to be balanced by increased growth of AM fungal hyphae.
机译:在未来气候情景下,植物-菌根相互作用将如何影响土壤碳平衡,这在我们预测生态系统碳储量和通量的能力方面仍然是一个未知数。我们检查了土壤温度(14、20、26摄氏度)对与车前草相关的丛枝菌根(AM)真菌多物种群落的结构和程度的影响。为了从根部分离真菌,我们使用了一个网格划分的盆栽系统,该系统在靠近和远离植物的地方都有单独的菌丝隔室。然后,使用C-13脉冲标签跟踪最近固定的植物从植物到地下水池和呼吸中的光合流。温度显着改变了AM菌丝网络的结构和分布,从冷却土壤中的更多囊泡(储存)向温暖土壤中的更广泛的自由基外菌丝网络(生长)转变。随着土壤温度的升高,我们还观察到植物光合产物转移到根和AM真菌并通过根和AM真菌呼吸的速度增加,同时每单位菌丝长度呼吸的碳量增加。这些差异在很大程度上与植物的大小和光合作用的速率无关。因此,在一个更温暖的世界中,我们预计AM真菌呼吸会导致更多的碳损失到大气中,而AM真菌菌丝的增长可能无法平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号