...
首页> 外文期刊>Global change biology >Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)
【24h】

Increased leaf area dominates carbon flux response to elevated CO2 in stands of Populus deltoides (Bartr.)

机译:叶面积的增加决定了三角果(Bartr。)林分对CO2升高的碳通量响应。

获取原文
获取原文并翻译 | 示例
           

摘要

We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed on top of continuing, long-term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6-14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25-39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short-term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf-level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf- and stand-level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well-irrigated stands; ratio of leaf : stand=3.2-3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8-1.3). These observations enabled a good prediction of whole stand assimilation from leaf-level data under water-stressed conditions; the predictive ability was less under well-watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI.
机译:我们在大型3年模式的三叶杨(Populus deltoides Bartr。)人工林中研究了大气蒸气压亏缺(VPD)和土壤水分胁迫(SMS)对叶片和林分CO2交换的影响,生物圈2实验室的受控环境。在生长季节结束时,在持续的长期二氧化碳处理(43和120 Pa)的基础上进行了一项短期实验。对于实验,将人工林在低和高体积土壤水分含量(25-39%)下暴露于低和高VPD(0.6和2.5 kPa)下6-14天。当校正系统总CO2同化的叶面积后,系统净CO2交换(SNCE),每日总SNCE和系统呼吸随CO2升高而增加。增加的主要原因是在短期试验之前,在高CO2的生长过程中出现了较大的叶面积。观察到的对SMS和高VPD处理的响应下降,部分原因是叶面积减少。在所有处理中,升高的CO2改善了林分水平上水分胁迫的气体交换后果。在所有处理下,随着CO 2浓度升高,林分光合作用的光响应曲线的初始斜率(林分对光的利用效率)增加。在所有土壤水分和VPD组合中都处于高CO2的条件下,叶片水平的净CO2同化率和表观量子效率始终较高,气孔电导和蒸腾作用显着降低(高土壤水分,低VPD的电导和蒸腾作用除外)。叶片水平和林分水平的总CO2交换的比较表明,由于冠层光照环境(在灌溉良好的林分;叶片:林分的比例= 3.2-3.5)中,同化的限制转换为主要的单个叶片限制(由于气孔)水分胁迫(叶:静置= 0.8-1.3)。这些观察结果可以很好地预测水分胁迫条件下叶片水平数据对整个林分同化的影响。在充足的条件下,预测能力较弱。数据还表明,需要更好地了解叶片水势,叶片脱落与林分LAI之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号