首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Determination of parameters of viscoelastic anisotropy from ray velocity and ray attenuation: Theory and numerical modeling
【24h】

Determination of parameters of viscoelastic anisotropy from ray velocity and ray attenuation: Theory and numerical modeling

机译:从射线速度和射线衰减确定粘弹性各向异性参数:理论和数值模型

获取原文
获取原文并翻译 | 示例
           

摘要

We have developed and numerically tested a method for determining parameters of homogeneous viscoelastic anisotropy from measurements of wavefields generated by point sources. The method is based on complex algebra and consists of several steps. First, a complex energy velocity surface is constructed from the directionally dependent velocity and attenuation measured along a set of ray directions. Second, a complex slowness surface is computed using the relation of polar reciprocity between the energy velocity and slowness vectors. The energy velocity vectors are homogeneous, but the corresponding slowness vectors are inhomogeneous. Finally, the complex phase velocity surface is calculated and inverted using the Christoffel equation. The inversion is nonlinear and can be performed in iterations. Numerical tests for the P-wave in transversely isotropic media showed that the method performed well for a wide range of models covering strong as well as weak velocity anisotropy and various levels of attenuation. The method was compared with a simplified approximate inversion when the inhomogeneity of the complex slowness vector is neglected. The neglect of the slowness vector inhomogeneity results in a significantly lower accuracy of the retrieved attenuation parameters. Accuracy with errors less than 10% is achieved only if the attenuation anisotropy is weak. This condition is, however, strongly restrictive because attenuation anisotropy is usually significant being more pronounced than the velocity anisotropy for most of rocks.
机译:我们已经开发并通过数值方法测试了一种通过测量点源所产生的波场来确定均质粘弹性各向异性参数的方法。该方法基于复杂的代数,包括几个步骤。首先,由沿着一组射线方向测得的方向相关的速度和衰减构造一个复杂的能量速度表面。其次,利用能量速度和慢度矢量之间的极易性关系来计算复杂的慢速表面。能量速度矢量是同质的,但是相应的慢度矢量是不均匀的。最后,使用Christoffel方程计算并反转复数相速度表面。反转是非线性的,可以迭代执行。横观各向同性介质中P波的数值试验表明,该方法在涉及强,弱速度各向异性以及各种衰减水平的各种模型中都表现良好。当忽略复杂慢度矢量的不均匀性时,将该方法与简化的近似反演进行了比较。忽略慢度矢量不均匀性会导致检索到的衰减参数的准确性大大降低。仅当衰减各向异性较弱时,才能实现误差小于10%的精度。但是,此条件受到严格限制,因为对于大多数岩石,衰减各向异性通常比速度各向异性更显着,并且显着得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号