...
【24h】

The timescales of plume generation caused by continental aggregation

机译:大陆聚集引起的羽状流产生的时间尺度

获取原文
获取原文并翻译 | 示例
           

摘要

To understand the thermal evolution of the mantle following the aggregation of non-subductable thick continental lithosphere, we study a numerical model in which a supercontinent, simulated by high viscosity raft, HVR, covers a part of the top surface of a convection layer. We model infinite Prandtl number convection either in a three-dimensional (3D) spherical shell, 3D rectangular box (aspect ratios: 8 and 4) or two-dimensional (2D) rectangular box (aspect ratio: 8) and except for the HVR, we specify a constant viscosity. The HVR, which has a viscosity higher than that of its surrounding, is instantaneously placed on the top surface of a well-developed convection layer and its position is fixed. Our results from 3D spherical shell cases with and without phase transitions show the emergence of a large plume characterized by a long wavelength thermal anomaly (a degree one pattern) for a Pangea-like geometry. We analyze the volume averaged temperature under the HVR (= ) the remaining (oceanic) area (= ) and total area (= ) to determine the timescale of plume generation. The difference between and (= ΔT_(CO)) and show the existence of two characteristic timescales. ΔT_(CO) exhibits an initial rapid increase and may become constant or continue to gradually increase. Meanwhile, shows a similar behavior but with a longer timescale. We find that these timescales associated with the increase of ΔT_(CO) and can be attributed to the formation of large scale flow (i.e. plume) and response of the whole system to the emplacement of the HVR, respectively. For 3D spherical cases, we find that the timescale of plume generation is 1-2 Gyr, if the Rayleigh number is 10~6. To determine the effects of the viscosity of the HVR, 2D versus 3D modeling and the effects of the internal heating, we have also studied 2D and 3D rectangular box cases. A factor of about two variation exists in the timescale of plume generation. It appears that the timescale becomes greater for a smaller amount of internal beating. This may be attributed to the time-dependent flow caused by the internal heating. For 2D cases, we find that the timescale of the high Rayleigh number (10~7) case is shortened by a factor of three to five when compared to the Ra = 10~6 case, which is consistent with the simple boundary layer theory. This may imply that well-developed plumes may arise with the timescale of 0.2 to 0.4 Gyr (for Ra = 10~7).
机译:为了了解地幔在非俯冲的厚大陆岩石圈聚集后的热演化,我们研究了一个数值模型,其中一个由高粘度筏HVR模拟的超大陆覆盖了对流层顶面的一部分。我们在三维(3D)球形壳体,3D矩形框(纵横比:8和4)或二维(2D)矩形框(纵横比:8)中对无限Prandtl数对流建模,但HVR除外,我们指定了恒定粘度。粘度高于其周围粘度的HVR立即放置在发达的对流层的顶面上,并且其位置是固定的。我们从具有和不具有相变的3D球壳案例中得出的结果表明,出现了一个大型羽状流,其特征是类似于Pangea几何形状的长波长热异常(一种模式)。我们分析了HVR(= ),剩余(海洋)面积(= )和总面积(= )下的体积平均温度,以确定羽流产生的时间尺度。 (=ΔT_(CO))和之间的差异表明存在两个特征时标。 ΔT_(CO)表现出初始的快速增加,并且可以变得恒定或继续逐渐增加。同时,表现出相似的行为,但具有更长的时间范围。我们发现,这些与ΔT_(CO)和的增加相关的时间尺度可以分别归因于大规模流量(即羽流)的形成以及整个系统对HVR位置的响应。对于3D球形情况,如果瑞利数为10〜6,则发现羽状流产生的时间尺度为1-2 Gyr。为了确定HVR粘度的影响,2D与3D建模以及内部加热的影响,我们还研究了2D和3D矩形箱体。羽流产生的时间尺度存在约两个变化的因素。似乎对于较小量的内部跳动,时间尺度会变大。这可能归因于内部加热引起的时间相关的流量。对于2D情况,我们发现与Ra = 10〜6情况相比,高瑞利数(10〜7)情况的时间尺度缩短了三到五倍,这与简单边界层理论是一致的。这可能意味着在0.2至0.4 Gyr的时间尺度上可能会出现发育良好的羽流(对于Ra = 10〜7)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号