...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications
【24h】

Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications

机译:解决原位宇宙发生核素应用中二次宇宙射线定标中的太阳调制和长期不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

Solar modulation affects the secondary cosmic rays responsible for in situ cosmogenic nuclide (CN) production the most at the high geomagnetic latitudes to which CN production rates are traditionally referenced. While this has long been recognized (e.g., D. Lai, B. Peters, Cosmic ray produced radioactivity on the Earth, in: K. Sitte (Ed.), Handbuch Der Physik XLVI/2, Springer-Verlag, Berlin, 1967, pp. 551-612 and D. Lai, Theoretically expected variations in the terrestrial cosmic ray production rates of isotopes, in: G.C. Castagnoli (Ed.), Proceedings of the Enrico Fermi International School of Physics 95, Italian Physical Society, Varenna, 1988, pp. 216-233), these variations can lead to potentially significant scaling model uncertainties that have not been addressed in detail. These uncertainties include the long-term (millennial-scale) average solar modulation level to which secondary cosmic rays should be referenced, and short-term fluctuations in cosmic ray intensity measurements used to derive published secondary cosmic ray scaling models. We have developed new scaling models for spallogenic nucleons, slow-muon capture and fast-muon interactions that specifically address these uncertainties. Our spallogenic nucleon scaling model, which includes data from portions of 5 solar cycles, explicitly incorporates a measure of solar modulation (S), and our fast- and slow-muon scaling models (based on more limited data) account for solar modulation effects through increased uncertainties. These models improve on previously published models by better sampling the observed variability in measured cosmic ray intensities as a function of geomagnetic latitude, altitude, and solar activity. Furthermore, placing the spallogenic nucleon data in a consistent time-space framework allows for a more realistic assessment of uncertainties in our model than in earlier ones. We demonstrate here that our models reasonably account for the effects of solar modulation on measured secondary cosmic ray intensities, within the uncertainties of our combined source datasets. We also estimate solar modulation variations over the last 11.4 ka from a recent physics-based sunspot number reconstruction derived from tree-ring C-14 data. This approximation suggests that spallogenic nucleon scaling factors in our model for sea level and high geomagnetic latitudes can differ by up to similar to 10%, depending on the time step over which the model sunspot numbers are averaged. The potential magnitude of this difference supports our contention that incorporating long-term solar modulation into secondary cosmic ray scaling is important. Although millennial-scale solar modulation clearly requires further study, we believe it is reasonable at present to use our S value record for scaling spallogenic nucleons during the last 11.4 ka, and the weighted mean S value for that period of 0.950 for longer exposure times. By accounting for solar modulation effects on the global variations in nucleon and muon fluxes, these models thus provide a useful framework on which to base CN production rate scaling functions.
机译:太阳调制在传统上以CN生产率为参考的高地磁纬度上,对负责原位宇宙形成核素(CN)生产的二次宇宙射线的影响最大。尽管人们早已认识到这一点(例如,D。Lai,B。Peters,宇宙射线在地球上产生了放射性,但位于:K. Sitte(编),Handbuch Der Physik XLVI / 2,施普林格出版社,柏林,1967年, pp。551-612和D. Lai,同位素在地球上宇宙射线产生速率的理论上预期的变化,在:GC Castagnoli(编),Enrico Fermi国际物理学院论文集95,意大利物理学会,瓦伦纳,1988年(第216-233页),这些变化可能会导致潜在的显着缩放比例模型不确定性,目前尚未详细解决。这些不确定性包括次级宇宙射线应参考的长期(千年尺度)平均太阳调制水平,以及用于得出已发布的次级宇宙射线缩放模型的宇宙射线强度测量的短期波动。我们已经针对散裂性核子,慢μ子捕获和快速μ子相互作用开发了新的缩放模型,这些模型专门解决了这些不确定性。我们的散裂核子缩放模型(包括来自5个太阳周期的部分数据)明确地结合了太阳调制(S)的度量,而我们的快速和慢子介子缩放模型(基于更有限的数据)通过以下方式解释了太阳调制效应不确定性增加。这些模型通过更好地采样所测量的宇宙射线强度随地磁纬度,高度和太阳活动的变化而对以前发布的模型进行了改进。此外,将散裂核子数据放置在一致的时空框架中,可以比早期模型更实际地评估模型中的不确定性。在这里,我们证明了我们的模型在我们合并的源数据集的不确定性范围内,合理地考虑了太阳调制对测得的次级宇宙射线强度的影响。我们还从最近的基于物理学的太阳黑子数重构中(从树年轮C-14数据中得出)估算了过去11.4 ka内的太阳调制变化。这种近似表明,在我们的模型中,针对海平面和高地磁纬度的散裂核子比例因子可能相差多达10%,这取决于对模型黑子数进行平均的时间步长。这种差异的潜在幅度支持我们的论点,即将长期太阳调制纳入次级宇宙射线定标很重要。尽管千禧年规模的太阳调制显然需要进一步研究,但我们认为目前合理的做法是,使用我们的S值记录来缩放最近11.4 ka内的散裂性核子,对于较长的暴露时间,该时间段的加权平均值S值为0.950。通过考虑太阳调制对核子和μ子通量的整体变化的影响,这些模型因此提供了一个有用的框架,可在此框架上建立CN生产率的缩放功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号