...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field
【24h】

Effects of temperature-dependent thermal diffusivity on shear instability in a viscoelastic zone: implications for faster ductile faulting and earthquakes in the spinel stability field

机译:温度相关的热扩散率对粘弹性区剪切不稳定性的影响:对尖晶石稳定场中更快的延性断层和地震的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The introduction of a new model of thermal diffusivity has motivated us to reinvestigate a one-dimensional viscoelastic shear zone model with realistic rheology, temperature-dependent thermal diffusivity (κ(T)) and viscous dissipation. Although thermal diffusivity in the shear zone is spatially heterogeneous with κ(T) and viscous heating, the spatial distribution of κ(T) does not affect shear zone evolution for the mesh resolution used in the model. As temperatures increase above room temperature, thermal diffusivity decreases. The lower thermal diffusivity causes a slight spatial thinning of the shear zone and an acceleration of the onset of instability relative to cases using a room temperature value of thermal diffusivity. Increasing he nonlinearity of κ(T) enhances shear zone thinning and speed-up of instability; the amount of enhancement depends on temperature, mineralogy and the rate of shear heating. The rheology of spinel creates a more unstable situation for the shear zone than that of olivine, but the boundary separating instability and stability is sensitive to changes in material properties. A decrease in the grain size does not influence the timescale of instability, unless grain size reduction causes diffusion creep to be the dominant deformation mechanism. Viscoelastic thermal-mechanical instabilities occur on timescales ranging from a few hundred to several thousand years. In most slabs, no instability is found to occur in spinel regions at temperatures above 1200 K. Likewise, shear instability in olivine at upper mantle depths will not occur at temperatures greater than 1100 K.
机译:一种新的热扩散率模型的引入促使我们重新研究具有现实流变性,温度相关的热扩散率(κ(T))和粘性耗散的一维粘弹性剪切带模型。尽管剪切带中的热扩散率在空间上与κ(T)和粘性加热在空间上是异质的,但对于模型中使用的网格分辨率,κ(T)的空间分布不会影响剪切带的演化。当温度升高到室温以上时,热扩散率降低。相对于使用室温热扩散率值的情况,较低的热扩散率会导致剪切区域的空间变薄,并且会加速不稳定性的开始。 κ(T)的非线性增加会增加剪切区变薄和不稳定性的加速;增强量取决于温度,矿物学和剪切加热速率。与橄榄石相比,尖晶石的流变学为剪切带创造了更加不稳定的情况,但是,将不稳定性和稳定性分开的边界对材料特性的变化敏感。晶粒尺寸的减小不会影响不稳定性的时间尺度,除非晶粒尺寸减小导致扩散蠕变是主要的变形机理。粘弹性热机械不稳定性的发生时间范围为几百到几千年。在大多数平板中,在1200 K以上的温度下,在尖晶石区域中均未发现不稳定性。同样,在高于1100 K的温度下,上地幔深度的橄榄石中的剪切不稳定性也不会发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号