...
【24h】

Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition

机译:从浅水BIF沉积中解耦光化学Fe(II)氧化

获取原文
获取原文并翻译 | 示例
           

摘要

Oxidized Fe minerals in Archean-Paleoproterozoic banded iron formations (BIFs) are commonly taken to indicate the presence of biogenic 02 or photosynthetic Fe(II)-oxidizing bacteria in the oceans' photic zone. However, at least one viable abiogenic oxidation mechanism has been proposed. Prior to the rise of atmospheric oxygen and the development of a protective ozone layer, the Earth's surface was subjected to high levels of ultraviolet radiation. Bulk ocean waters that were anoxic at this time could have supported high concentrations of dissolved Fe(II). Under such conditions, dissolved ferrous iron species, such as Fe2+ and Fe(OH)(+), would have absorbed radiation in the 200-400 nm range, leading to the formation of dissolved ferric iron [Fe(III)], which in turn, would have hydrolyzed to form ferric hydroxide [Fe(OH)(3)] at circumneutral pH [Cairns-Smith, A.G., 1978, Precambrian Solution photochemistry, inverse segregation, and banded iron formations. Nature 76, 807-808; Braterman, P.S., Cairns-Smith, A.G., and Sloper, R.W., 1983, Photo-oxidation of hydrated Fe-2-Significance for banded iron formations. Nature 303, 163-164]. This process has been invoked to account for BIF deposition without need for biology [Francois, L.M., 1986, Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320, 352-354]. Here, we evaluate the potential importance of photochemical oxidation using a combination of experiments and thermodynamic models. The experiments simulate the chemistry of ambient Precambrian seawater mixing with Fe(II)-rich hydrothermal fluids with, and without, UV irradiation. We find that if Fe(II) was effused from relatively shallow seamount-type vent systems directly into an anoxic photic zone, the photochemical contribution to solid-phase precipitation would have been negligible. Instead, most of the Fe(II) Would have precipitated rapidly as an amorphous precursor phase to the ferrous silicate mineral greenalite ((Fe)(3)Si2O5 (OH)(4)), and/or the ferrous carbonate, siderite (FeCO3), depending on different simulated atmospheric pCO(2) levels. Conversely, in experiments where Fe(II) was exposed either to phototrophic Fe(II)-oxidizing bacteria or to 02, ferric hydroxide formed rapidly, and the precipitation of ferrous iron phases was not observed. If, as suggested on mass balance grounds, BIF deposition requires that Fe be sourced from shallow seamount-type systems, then we are driven to conclude that oxide-facies BIF are the product of a rapid, non-photochemical oxidative process, the most likely candidates being direct or indirect biological oxidation, and that a significant fraction of BIF could have initially been deposited as ferrous minerals. (C) 2007 Elsevier B.V All rights reserved.
机译:太古宙古生代带状铁构造(BIF)中的氧化铁矿物通常被用来指示在海洋的光合带中存在生物型O 2或光合Fe(II)的氧化细菌。然而,已经提出了至少一种可行的生源氧化机制。在大气中的氧气上升和保护性臭氧层发展之前,地球表面曾遭受高水平的紫外线辐射。此时的缺氧大洋水可能已经支持了高浓度的溶解的Fe(II)。在这种条件下,诸如Fe2 +和Fe(OH)(+)之类的溶解性亚铁元素将吸收200-400 nm范围内的辐射,从而导致溶解的三价铁[Fe(III)]的形成。反之,在周围环境pH值下会水解形成氢氧化铁[Fe(OH)(3)] [Cairns-Smith,AG,1978,前寒武纪溶液光化学,逆偏析和带状铁形成。自然76,807-808; P.S.的Braterman,A.G。的Cairns-Smith和R.W.的Sloper,1983年,水合Fe-2-的光氧化对带状铁形成的重要性。 Nature 303,163-164]。无需生物学即可调用此过程来解释BIF的沉积[Francois,L.M.,1986,带状铁形成物的大量沉积无需光合作用即可。 Nature 320,352-354]。在这里,我们结合实验和热力学模型评估光化学氧化的潜在重要性。实验模拟了环境前寒武纪海水与富铁(II)的热液在有无紫外线照射下混合的化学过程。我们发现,如果将Fe(II)从相对较浅的海山型通风系统直接喷入缺氧的光合带,那么光化学对固相沉淀的贡献就可以忽略不计。取而代之的是,大多数Fe(II)会作为非晶态前体相迅速沉淀到硅酸亚铁矿物绿藻土((Fe)(3)Si2O5(OH)(4))和/或碳酸亚铁,菱铁矿(FeCO3 ),具体取决于不同的模拟大气pCO(2)水平。相反,在将Fe(II)暴露于光养性Fe(II)氧化细菌或O 2的实验中,氢氧化铁迅速形成,并且未观察到亚铁相的沉淀。如果根据质量平衡的理由建议,如果BIF沉积要求Fe来源于浅海山型系统,那么我们就可以得出结论,氧化物相BIF是快速,非光化学氧化过程的产物,最可能的原因是可能是直接或间接的生物氧化反应,而且大部分BIF最初可能以铁矿物质形式沉积。 (C)2007 Elsevier B.V保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号