...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle
【24h】

Melting relations in the chloride-carbonate-silicate systems at high-pressure and the model for formation of alkalic diamond-forming liquids in the upper mantle

机译:高压氯化物-碳酸盐-硅酸盐体系中的熔融关系和上地幔中形成碱性金刚石的液体形成模型

获取原文
获取原文并翻译 | 示例
           

摘要

The experiments in the model system CaMgSi2O6-(Na2CO3, CaCO3)-KCl are performed at 5 GPa and 1400-1600 degrees C in order to study the phase relations, including liquid immiscibility, in the chloride-carbonate-silicate systems with application to alkali and chlorine-rich liquids preserved in kimberlitic diamonds. Experiments in the boundary joins of the system demonstrated that both the carbonate-silicate and chloride-carbonate melts are homogeneous; while high-temperature (above 1800 degrees C) liquid immiscibility is assumed for the chloride-silicate join of the above system. Addition of silicate component into the chloride-carbonate melts and chloride component into the carbonate-silicate melts results in splitting of the homogeneous liquids into the immiscible chloride-carbonate brine and carbonate-silicate melt. Carbonate-silicate and chloride-carbonate branches of the miscibility gap converge within the carbonate-rich region of the system. Regular temperature evolution of the shape and size of the miscibility gap is deduced. With decreasing temperature, the convergence point moves toward more Si-rich compositions, expanding fields of homogeneous chloride-carbonate silica-saturated melts. This effect is governed by the precipitation of the silicate phases even from silica-beating chloride-carbonate melts. In addition, experiments revealed regular evolution of both Cl-bearing carbonate-silicate melt and Si-bearing chloride-carbonate brine toward the low-temperature chlorine-bearing carbonatitic liquid with decreasing temperature. These trends are similar to the evolution of the melt and brine inclusions in some diamonds from Botswana, Brazil, Canada, and Yakutia, indicating their growth during cooling. The model for interaction of the chloride-carbonate brine with the mantle rocks is developed on the basis of the present experimental data. This model is applied to the chlorine-enriched kimberlites of the Udachnaya-East pipe. (c) 2006 Elsevier B.V. All rights reserved.
机译:CaMgSi2O6-(Na2CO3,CaCO3)-KCl模型系统的实验在5 GPa和1400-1600摄氏度下进行,目的是研究应用于碱金属的氯化物-碳酸盐-硅酸盐系统中的相关系,包括液体不溶混性。和金伯利钻石中保存的富含氯的液体。系统边界连接处的实验表明,碳酸盐-硅酸盐和氯化物-碳酸盐熔体是均匀的。假定上述系统的氯化物-硅酸盐连接处具有高温(高于1800摄氏度)的液体不溶混性。将硅酸盐组分添加到氯化物-碳酸盐熔体中并且将氯化物组分添加到碳酸盐-硅酸盐熔体中导致均质液体分裂成不溶混的氯化物-碳酸盐盐水和碳酸盐-硅酸盐熔体。混溶间隙的碳酸盐-硅酸盐和氯化物-碳酸盐分支在系统的富碳酸盐区域内收敛。推导了可混溶间隙的形状和大小的规则温度演化。随着温度的降低,会聚点趋向于更多的富硅成分,从而扩大了均匀的氯化碳-碳酸盐二氧化硅饱和熔体的场。这种影响是由硅酸盐相的沉淀所决定的,甚至是由二氧化硅打碎的氯化碳-碳酸盐熔体产生的。此外,实验表明,随着温度的降低,含氯的碳酸盐-硅酸盐熔体和含硅的氯化物-碳酸盐盐水都向低温的含氯碳酸盐液体规律地演化。这些趋势类似于来自博茨瓦纳,巴西,加拿大和雅库特的一些钻石中熔体和盐水夹杂物的演变,表明它们在冷却过程中会增长。在目前的实验数据的基础上,建立了氯化碳酸盐盐水与地幔岩石相互作用的模型。该模型适用于Udachnaya-East管的富氯金伯利岩。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号