...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust
【24h】

Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust

机译:重复侵入玄武岩侵入对地壳热演化和熔体生成的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A one-dimensional thermal conduction model simulates the repetitive intrusion of basalt sills into the deeper parts of the crust. The model assumes geothermal gradients of 10-30 ℃ km~(-1), and intrusion depths at 20 and 30 km. A range of intrusion rates from 50 m of intruded basalt every 1000, 10 000 and 100 000 years cover a range of geodynamic situations. There is an initial incubation period in which the basalt intrusions solidify. Generation of silicic melts initiates when the solidus temperatures of either the basalt magma or surrounding crust is reached. At an intrusion rate of 50 m per 10 000 years incubation periods in the range 10~5-10~6 years are estimated, consistent with geochronological and stratigraphic data on many volcanic systems where there is commonly an evolution from mafic to silicic volcanism. Melt generation involves simultaneous cooling and crystallization of intruding basalt and partial melting of both new basaltic crust and pre-existing old crust. The proportion of these components depends on the fertility of the crust, in particular the abundance of hydrous minerals, and the temperature and water content of the basalt magma. For a wet (2% H_2O) and cool (1100 ℃) basalt, melt generation can be dominated by residual liquids from basalt crystallization. For a dry (0.3% H_2O) and hot (1300 ℃) basalt emplaced into fertile crustal rocks, such as pelite, melt generation can be dominated by partial melting of old crust. Melt proportions and temperature vary greatly across such a deep crustal intrusion zone, resulting in geochemical diversity in magmas. Segregated melts, if mixed together during ascent or in a high-level magma chamber, will be geochemical hybrids with mantle and crustal components. Intrusion rates of 50 m per 100 000 years or less are too low for large-scale melt generation in the crust. Periods of magmatic intrusion create reverse geothermal gradients and thermal anomalies in the crust which will take several million years to decay. Such anomalous zones are predisposed to remelt if a subsequent magmatic episode initiates.
机译:一维热传导模型模拟玄武岩窗台向地壳深处的重复侵入。该模型假设地热梯度为10-30℃km〜(-1),侵入深度为20和30 km。每1000年,10000年和100000年,从50 m的玄武岩中侵入的速率范围涵盖了各种地球动力学情况。在最初的潜伏期,玄武岩侵入物会凝固。当达到玄武岩浆或周围地壳的固相线温度时,开始产生硅质熔体。以每万年50 m的侵入速度估算,潜伏期在10〜5-10〜6年之间,这与许多火山系统的地层学和地层数据一致,这些火山系统通常会从铁镁质火山岩向硅质火山岩演化。熔体的产生涉及侵入玄武岩的同时冷却和结晶,以及新玄武质地壳和已存在的旧地壳的部分熔融。这些成分的比例取决于地壳的肥力,特别是含水矿物的含量,以及玄武岩浆的温度和水含量。对于湿的(2%H_2O)和冷的(1100℃)玄武岩,熔体的产生可能受玄武岩结晶残余液体的支配。对于一块干的(0.3%H_2O)和一块热的(1300℃)玄武岩放入肥沃的地壳岩石(如贝利特)中,熔体的产生主要由旧地壳的部分熔化所决定。在如此深的地壳侵入区,熔体比例和温度变化很大,从而导致岩浆中的地球化学多样性。如果在上升过程中或在高水平的岩浆室内将分离的熔体混合在一起,将成为具有地幔和地壳成分的地球化学混合物。每10万年或更短50 m的侵入速率对于地壳中的大规模熔体生成而言太低了。岩浆侵入的时期在地壳中产生反向的地热梯度和热异常,这将需要几百万年才能衰减。如果随后的岩浆发作开始,则这种异常区域易于纠正。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号