...
【24h】

Firm mantle plumes and the nature of the core-mantle boundary region

机译:坚硬的地幔柱和核心-地幔边界区域的性质

获取原文
获取原文并翻译 | 示例
           

摘要

Recent tomographic imaging of thick plume conduits in the lower mantle, when combined with plume buoyancy flux based on hotspot swell topography, indicates a very high Plume Viscosity Of 10(21)-10(23) Pa s. This estimated plume viscosity is comparable or may even be greater than the viscosity of the bulk lower mantle, the estimate of which ranges from 2x10(21) to 10(22) Pa s. Here I show that both very high viscosity and large radii of lower-mantle plumes can be simultaneously explained if the temperature dependency of lower-mantle theology is dominated by the grain size-dependent part of diffusion creep, i.e., hotter mantle has higher viscosity. Fluid-dynamical scaling laws of a thermal boundary layer suggest that the thickness and topography of the D '' discontinuity are consistent with such mantle theology. This new kind of plume dynamics may also explain why plumes appear to be fixed in space despite background mantle flow and why plume excess temperature is only up to 200-300 K whereas the temperature difference at the core-mantle boundary is likely to exceed 1000 K. (c) 2005 Elsevier B.V. All rights reserved.
机译:最近的层析成像显示下地幔中较厚的羽状导管,结合基于热点膨胀地形的羽状浮力通量,表明其羽状粘度非常高,为10(21)-10(23)Pa s。这种估计的羽流粘度是可比的,甚至可能大于下部大块地幔的粘度,其估计范围为2x10(21)Pa到10(22)Pa s。在这里我表明,如果下地幔神学的温度依赖性受扩散蠕变的晶粒尺寸相关部分支配,即较热的地幔具有较高的粘度,那么可以同时解释非常高的粘度和下地幔羽的大半径。热边界层的流体动力学定律表明,D''不连续点的厚度和形貌与这种地幔神学是一致的。这种新型的羽流动力学也可以解释为什么尽管有背景地幔流,羽流仍在空间中固定,以及为什么羽流过剩温度仅高达200-300 K,而在核心-地幔边界的温度差却可能超过1000 K (c)2005 Elsevier BV保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号