...
【24h】

Evidence for biotic controls on topography and soil production

机译:生物控制地形和土壤生产的证据

获取原文
获取原文并翻译 | 示例
           

摘要

The complex interplay of biological, physical, and chemical processes in pedogenesis and hillslope evolution limits our ability to predict and interpret landscape dynamics. Here, we synthesize a suite of observations from the steep, forested Oregon Coast Range to analyze the role of trees in topographic modification and bedrock-to-soil conversion. Using topographic data derived from airborne lidar, we demonstrate that the topographic signature of forest-driven soil and bedrock disturbance is pervasive. For length scales greater than 7.5. m, the land surface is defined by ridge-valley landforms, whereas smaller scales are dominated by pit-mound features generated by the turnover of large coniferous trees. From field surveys, the volume of bedrock incorporated in overturned rootwads increases rapidly with diameter for large conifers, reflecting the highly nonlinear increase in root biomass with tree diameter. Because trees younger than 60. years detach negligible bedrock, short timber harvest intervals may limit the extent to which root systems penetrate bedrock and facilitate bedrock fracturing and biogeochemical weathering. Using ground-penetrating radar, we show that the rootwads of large trees root achieve substantial penetration (1-3. m) into shallow bedrock. The radar transects also reveal that variations in soil thickness have characteristic length scales of 1 to 5. m, consistent with the scale of large rootwads, indicating that both the landscape surface and soil-bedrock interface exhibit a biogenic imprint. In our study area, the residence time of bedrock within dense rooting zones directly below large trees is similar to the time required for trees to occupy the entire forest floor through multiple cycles of forest succession, suggesting that biological modification of shallow bedrock is ubiquitous. Given increases in erosion rate, the ability of roots to initiate soil production may decline as bedrock exhumation through the biotic zone is rapid relative to the time required for successive forests and their associated root systems to fracture bedrock. As a result, in rapidly eroding terrain the coupling between biotic and abiotic weathering processes (such as exfoliation fracturing) may dictate the maximum rate of bedrock-to-soil conversion.
机译:在成岩作用和山坡演化过程中,生物,物理和化学过程的复杂相互作用限制了我们预测和解释景观动态的能力。在这里,我们综合了俄勒冈州沿海陡峭森林带的一组观测资料,以分析树木在地形修改和基岩向土壤转化中的作用。使用来自机载激光雷达的地形数据,我们证明了森林驱动的土壤和基岩扰动的地形特征是普遍存在的。对于大于7.5的长度比例。 m,土地表面由山脊谷地貌所定义,而较小的规模则由大型针叶树的周转所产生的坑丘特征主导。根据实地调查,在大型针叶树中,倒置的根茎中所含基岩的体积随直径的增加而迅速增加,这反映了根系生物量随树木直径的高度非线性增加。由于年龄小于60岁的树木会脱离可忽略的基岩,因此较短的木材采伐间隔可能会限制根系穿透基岩的程度,并促进基岩破裂和生物地球化学风化。使用探地雷达,我们显示了大树根部的根茎达到了对浅基岩的大量渗透(1-3。m)。雷达横断面还显示,土壤厚度的变化具有1至5 m的特征长度尺度,与大根茎的尺度一致,表明景观表面和土壤-基岩界面均显示出生物印记。在我们的研究区域中,基岩在大树正下方的密集生根区内的停留时间类似于树木通过多次森林演替循环占据整个林底所需的时间,这表明浅层基岩的生物改性是普遍存在的。考虑到侵蚀速率的增加,根基通过生化区发掘出的基岩相对于连续的森林及其相关的根系破坏基岩所需的时间可能会很快,因此根系启动土壤生产的能力可能会下降。结果,在快速侵蚀的地形中,生物和非生物风化过程(例如剥离剥落)之间的耦合可能决定了基岩向土壤转化的最大速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号