...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages
【24h】

Carbon speciation in the asthenosphere: Experimental measurements of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite assemblages

机译:软流圈中的碳形态:橄榄岩组合中含碳酸盐的熔融物与石墨或金刚石共存的氧化还原条件的实验测量

获取原文
获取原文并翻译 | 示例
           

摘要

The speciation of carbon in the Earth's mantle is largely governed by oxygen fugacity. Under reducing conditions carbon forms graphite, diamond or CH_4, while under more oxidising conditions carbonate minerals or CO_2-bearing melts or fluids are stable. Using an Ir-Fe alloy sliding redox sensor we have measured the oxygen fugacity at which carbon (graphite or diamond) oxidises to carbonate minerals or melts within mantle peridotite assemblages between 2.5 and 11GPa at 1100-1600°C. The experiments were performed up to temperatures where carbonate melts evolve towards more silicate-rich compositions. The dilution of the carbonate melt component lowers the relative fo_2, expanding the melt stability field with respect to reduced carbon. We parameterise our results for the a Ca-bearing system as a function of P (in bars), T (K) and mole fraction of CO_2 (X_(CO2)) in the melt with the equation.Logfo2=5.44-21380/T+0.078P-1/T+LogXCO2 This expression reproduces our experimental results to within 0.3 log units between 2.5 and 11GPa. A further equation is fitted to Ca-free results. Studies indicate that garnet peridotite mantle rocks become progressively more reduced with depth due to the effects of pressure on the governing ferric/ferrous equilibria. It has been proposed that small degree carbonate-rich melts may form at depths up to 300km beneath mid ocean ridges; however, if the current garnet peridotite oxy-thermometer is correct then our results indicate that the fo_2 of peridotitic mantle will remain in the diamond/graphite stability field up to at least 100-150km depth. Only at depths shallower than 150km would Fe~(3+) in mantle silicates react with graphite to produce carbonate-rich melts in a redox melting process. Redox melting, therefore, limits the depth interval over which carbonate-rich melts can form beneath ridges. If current estimates for the effect of pressure on mantle fo_2 in the garnet peridotite stability field are correct, graphite or diamond should be the dominant host for carbon below 150km, although Fe metal and carbides are also possible hosts in the deep mantle. In peridotitic mantle carbonates should only be stable at depths greater than 150km in highly oxidised regions or as dilute melt species.
机译:地幔中碳的形态主要受氧逸度的支配。在还原条件下,碳形成石墨,金刚石或CH_4,而在更多氧化条件下,碳酸盐矿物或含CO_2的熔体或流体稳定。使用Ir-Fe合金滑动氧化还原传感器,我们在1100-1600°C下测量了碳(石墨或钻石)氧化成碳酸盐矿物或在地幔橄榄岩组合体中2.5至11GPa之间熔化时的氧逸度。进行实验的温度一直到碳酸盐熔体向富含硅酸盐的成分演变。碳酸盐熔体组分的稀释降低了相对fo_2,相对于还原碳,扩大了熔体稳定性场。我们将含Ca的系统的结果参数化为熔体中P(以bar为单位),T(K)和熔体中CO_2(X_(CO2))的摩尔分数的函数.Logfo2 = 5.44-21380 / T + 0.078P-1 / T + LogXCO2此表达式将我们的实验结果复制到2.5和11GPa之间的0.3 log单位之内。另一个方程适用于无钙结果。研究表明,由于压力对控制铁/铁平衡的影响,石榴石橄榄岩地幔岩石随着深度的增加而逐渐减小。有人提出,在中海脊以下300 km的深度可能会形成少量的富含碳酸盐的熔体。但是,如果当前的石榴石橄榄岩氧温计是正确的,那么我们的结果表明,橄榄岩地幔的fo_2将保留在金刚石/石墨稳定性场中,深度至少为100-150km。地幔硅酸盐中的Fe〜(3+)仅在小于150 km的深度才会与石墨发生反应,从而在氧化还原熔融过程中生成富含碳酸盐的熔体。因此,氧化还原融化限制了在隆起物下方形成富含碳酸盐的融化物的深度间隔。如果当前对石榴石橄榄岩橄榄石稳定性场中压力对地幔fo_2的影响的估计是正确的,则石墨或金刚石应该是150 km以下碳的主要基质,尽管深地幔中还可能含有铁和碳化物。在橄榄岩地幔中,碳酸盐只能在高度氧化的区域中大于150 km的深度处保持稳定,或作为稀薄的熔体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号