...
【24h】

Thermal history of the Earth and its petrological expression

机译:地球的热史及其岩石学表达

获取原文
获取原文并翻译 | 示例
           

摘要

Non-arc basalts of Archean and Proterozoic age have model primary magmas that exhibit mantle potential temperatures T-P that increase from 1350 degrees C at the present to a maximum of similar to 1500-1600 degrees C at 2.5-3.0 Ga. The overall trend of these temperatures converges smoothly to that of the present-day MORB source, supporting the interpretation that the non-arc basalts formed by the melting of hot ambient mantle, not mantle plumes, and that they can constrain the thermal history of the Earth. These petrological results are very similar to those predicted by thermal models characterized by a low Urey ratio and more sluggish mantle convection in the past. We infer that the mantle was warming in deep Archean-Hadean time because internal heating exceeded surface heat loss, and it has been cooling from 2.5 to 3.0 Ga to the present. Non-arc Precambrian basalts are likely to be similar to those that formed oceanic crust and erupted on continents. It is estimated that similar to 25-35 km of oceanic crust formed in the ancient Earth by about 30% melting of hot ambient mantle. In contrast, komatiite parental magmas reveal T-P that are higher than those of non-arc basalts, consistent with the hot plume model. However, the associated excess magmatism was minor and oceanic plateaus, if they existed, would have had subtle bathymetric variations, unlike those of Phanerozoic oceanic plateaus. Primary magmas of Precambrian ambient mantle had 18-24% MgO. and they left behind residues of harzburgite that are now found as xenoliths of cratonic mantle. We infer that primary basaltic partial melts having 10-13% MgO are a feature of Phanerozoic magmatism, not of the early Earth, which may be why modern-day analogs of oceanic crust have not been reported in Archean greenstone belts. (c) 2010 Elsevier B.V. All rights reserved.
机译:太古宙时代和元古代的非弧形玄武岩具有模型原始岩浆,它们的地幔潜在温度TP从目前的1350摄氏度增加到2.5-3.0 Ga时的最高类似于1500-1600摄氏度。这些的总体趋势温度平稳地收敛到当今的MORB来源,支持了这样的解释:由高温的地幔而不是地幔柱熔融形成的非弧形玄武岩,并且它们可以约束地球的热历史。这些岩石学结果与过去以低Urey比和更缓慢的地幔对流为特征的热模型预测的结果非常相似。我们推断,由于内部加热超过了地表热量的损失,地幔在深处的太古宙-哈代时期一直在变暖,并且从现在的2.5 Ga降温到3.0 Ga。非弧前寒武纪玄武岩可能与形成大洋地壳并在大陆喷发的玄武岩相似。据估计,类似于约25-35 km的远古地壳是由约30%的热环境地幔融化形成的。相反,科马蒂岩的父母岩浆揭示的T-P值高于非弧形玄武岩的T-P值,这与热羽状模型一致。然而,与之相关的过剩岩浆作用较小,如果高原存在,大洋高原将有细微的水深变化,这与半生界大洋高原不同。前寒武纪环境地幔的原浆岩含18-24%MgO。他们留下了现在被发现为克拉通地幔的异岩的哈兹贝格残余物。我们推断,MgO含量为10%至13%的原始玄武质部分熔体是Phanerozoic岩浆作用的特征,而不是早期地球的特征,这可能就是为什么在Archean绿岩带中没有现代洋壳类似物的报道。 (c)2010 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号