...
首页> 外文期刊>International Journal of Quantum Chemistry >Thermodynamic molecular switch in biological systems
【24h】

Thermodynamic molecular switch in biological systems

机译:生物系统中的热力学分子开关

获取原文
获取原文并翻译 | 示例
           

摘要

It is, of course, known that most living systems can live and operate optimally only at a sharply defined temperature, or over a Limited temperature range at best. This implies that many basic biochemical interactions exhibit a well-defined Gibbs free energy minimum as a function of temperature. Most typical processes of biological molecules or biopolymers show DeltaH degrees>(*) over bar * (T) positive (unfavorable) and also a positive DeltaS degrees>(*) over bar * (T) (favorable) at low temperature, due to a positive (DeltaC(p)degrees /T). For biological systems DeltaG degrees>(*) over bar * (T) shows a complicated behavior, wherein DeltaG degrees>(*) over bar * (T) changes from positive to negative, then reaches a negative value of maximum magnitude, and finally becomes positive as temperature increases. This communication demonstrates that the critical factor is a temyerature-dependent DeltaC(p)degrees>(*) over bar * (T) (specific heat capacity change) of reaction that is positive at low temperature but switches to a negative value at a temperature well below the ambient range. This thermodynamic molecular switch determines the behavior patterns of the Gibbs free energy change, and hence a change in the equilibrium constant, K-eq, and/or spontaneity. The subsequent, mathematically predictable changes in DeltaH degrees>(*) over bar * (T), DeltaS degrees>(*) over bar * (T), DeltaW degrees>(*) over bar * (T) and DeltaG degrees>(*) over bar * (T) give rise to the classically observed behavior patterns in biological reactivity as demonstrated in three interacting protein systems-human DNA ligase I-DNA polymerase beta, the fragment complementation reaction of S-protein-phe 13-S-peptide (M13F-RNase S'), and glucagon trimerization. In cases of protein unfolding such as the phage T4 phage lysozyme temperature-sensitive mutants, no thermodynamic molecular switch is observed. (C) 2000 John Wiley & Sons, Inc. [References: 38]
机译:当然,众所周知,大多数生命系统只能在明确定义的温度下或最好在有限的温度范围内才能最佳地生活和运行。这意味着许多基本的生化相互作用表现出作为温度的函数的明确定义的吉布斯自由能最小值。生物分子或生物聚合物的最典型过程显示,在低温下,DeltaH度>(*)超过bar *(T)为正(不利),并且在低温下,DeltaH度>(*)超过bar *(T)(有利)为低温正数(DeltaC(p)degrees / T)。对于生物系统,DeltaG度>(*)超过横杠*(T)显示复杂的行为,其中DeltaG度>(*)超过横杠*(T)从正变为负,然后达到最大幅度的负值,最后随着温度升高而变为正。这种交流表明,关键因素是反应的温度依赖性DeltaC(p)degrees>(*)bar *(T)(比热容变化)在低温下为正,但在温度下变为负值远低于环境范围。该热力学分子开关确定了吉布斯自由能变化的行为模式,从而确定了平衡常数,Keq和/或自发性的变化。随后的数学上可预测的变化是DeltaH度>(*)超过条形*(T),DeltaS度>(*)超过条形*(T),DeltaW度>(*)超过条形*(T)和DeltaG度>( *)超过bar *(T)产生了经典的生物学反应行为模式,如三种相互作用的蛋白质系统所证实的那样:人DNA连接酶I-DNA聚合酶β,S蛋白phe 13-S-的片段互补反应肽(M13F-RNase S')和胰高血糖素三聚体。在蛋白质解折叠的情况下,例如噬菌体T4噬菌体溶菌酶温度敏感突变体,没有观察到热力学分子转换。 (C)2000 John Wiley&Sons,Inc. [参考:38]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号