...
首页> 外文期刊>International Journal of Precision Engineering and Manufacturing >Evaluation of Thermal Gradient Mechanical Fatigue Characteristics of Thermal Barrier Coating, Considering the Effects of Thermally Grown Oxide
【24h】

Evaluation of Thermal Gradient Mechanical Fatigue Characteristics of Thermal Barrier Coating, Considering the Effects of Thermally Grown Oxide

机译:考虑热生长氧化物的影响,评估热障涂层的热梯度机械疲劳特性

获取原文
获取原文并翻译 | 示例
           

摘要

Gas turbines of aircraft and power generation plants operate at a high turbine inlet temperature (TIT) or combustion temperature higher than 1,000 degrees C to obtain high thermal efficiency The parts directly in contact with the high temperature flame are made of a nickel-base superalloy, which has strong heat resistance. In addition, the thermal barrier coating (TBC) technique is applied to increase the heat resistance. The TBC prevents direct heat transfer from the high temperature flame to the metallic substrate. Thus, the TBC technique reduces the substrate surface temperature by approximately 100 similar to 170 degrees C. The delamination caused by the growth of thermally grown oxide (TGO) decreases the life of the TBC system. In addition, gas turbine blades experience centrifugal forces owing to high speeds of approximately 3600 rpm and they experience low cycle fatigue because of frequent startup and shutdown. Therefore, the integrity of the TBC system should be evaluated under the thermal gradient mechanical fatigue condition. In this study, finite element analysis (FEA) was performed for the TBC model considering TGO, and the effect of TGO on TBC systems was evaluated under the thermal gradient mechanical fatigue condition.
机译:飞机和发电厂的燃气轮机在较高的涡轮机入口温度(TIT)或高于1000摄氏度的燃烧温度下运行,以获取较高的热效率。与高温火焰直接接触的零件均由镍基高温合金制成,具有很强的耐热性。另外,热障涂层(TBC)技术被应用来增加耐热性。 TBC防止热量从高温火焰直接传递到金属基材。因此,TBC技术将基板表面温度降低了约170摄氏度(约170摄氏度)。由热生长氧化物(TGO)的生长引起的分层降低了TBC系统的寿命。另外,燃气涡轮机叶片由于约3600 rpm的高转速而承受离心力,并且由于频繁的启动和关闭而经受低循环疲劳。因此,应在热梯度机械疲劳条件下评估TBC系统的完整性。在这项研究中,对考虑TGO的TBC模型进行了有限元分析(FEA),并在热梯度机械疲劳条件下评估了TGO对TBC系统的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号