...
首页> 外文期刊>International Geology Review >The Kaapvaal Craton, South Africa: no evidence for a supercontinental affinity prior to 2.0 Ga?
【24h】

The Kaapvaal Craton, South Africa: no evidence for a supercontinental affinity prior to 2.0 Ga?

机译:南非Kaapvaal Craton:没有证据表明2.0 Ga之前的超大陆亲和力吗?

获取原文
获取原文并翻译 | 示例
           

摘要

We briefly examine the possible antiquity of the supercontinental cycle while noting the likely unreliability of palaeomagnetic data >ca.1.8 Ga, assuming a gradual change from a magmatically dominated Hadean Earth to a plate tectonically dominated Neoarchaean system. A brief review of one of Earth’s oldest cratons, Kaapvaal, where accent is placed on the lithostratigraphic and geodynamic-chronological history of its cover rocks from ca. 3.1 to 2.05 Ga, forms the factual basis for this article. The ca. 3.1–2.8 Ga Witwatersrand–Pongola (Supergroups) complex retroarc flexural foreland basin developed while growth and stabilization of the craton were still underway. Accretion of relatively small composite granite-gneiss-greenstone terranes (island arc complexes) from both north and west does not support the formation of a Neoarchaean supercontinent, but may well have been related to a mantle plume which enhanced primary gold sources in the accreted terranes and possibly controlled the timing and rate of craton growth through plate convergent processes. Subsequent deformation of the Witwatersrand Basin fill with concomitant loss of ≤1.5 km of stratigraphy must have been due to far-field tectonic effects, but no known mobile belt or even greenstone belts can be related to this contractional event. At ca. 2714–2709 Ma, a large mantle plume impinged beneath the thinned crust underlying theWitwatersrand Basin forming thick, locally komatiitic flood basalts at the base of the Ventersdorp Supergroup, with subsequent thermal doming leading to graben basins within which medial bimodal volcanics and immature sediments accumulated. Finally (possibly at ca. 2.66–2.68 Ga), thermal subsidence enabled the deposition of uppermost Ventersdorp sheet-like lavas and sediments, with minor komatiites still present. Ongoing plume-related influences are thus inferred, and an analogous cause is ascribed to a ca. 2.66–2.68 Ga dike swarm to the north of the Ventersdorp, where associated rifting allowed formation of discrete ‘protobasinal’ depositories of the Transvaal (ca. 2.6–2.05 Ga Supergroup, preserved in three basins). Thin fluvial sheet sandstones (Black Reef Formation, undated) above these lowermost rift fills show an association with localized compressive deformation along the palaeo-Rand anticline, north of Johannesburg, but again with no evidence of any major terrane amalgamations with the Kaapvaal. From ca. 2642 to 2432 Ma, the craton was drowned with a long-lived epeiric marine carbonate-banded iron formation platform covering much of it and preserved in all three Transvaal Basins (TB). During this general period, at ca. 2691–2610 Ma, the Kaapvaal Craton collided with a small exotic terrane [the Central Zone (CZ), Limpopo Belt] in the north. Although farfield tectonic effects are likely implicit in TB geodynamics, again there is no case to be made for supercontinent formation. Following an 80–200 million years (?) hiatus, with localized deformation and removal of large thicknesses of chemically precipitated sediments along the palaeo-Rand anticline, the uppermost Pretoria Group of the Transvaal Supergroup was deposited. This reflects two episodes of rifting associated with volcanism, and subsequent thermal subsidence within a sag basin setting; an association of the second such event with flood basalts supports a plume affinity. At ca. 2050 Ma the Bushveld Complex intruded the northern Kaapvaal Craton and reflects a major plume, following which Kaapvaal–CZ collided with the Zimbabwe Craton, when for the first time, strong evidence exists for a small supercontinent assembly, at ca. 2.0 Ga. We postulate that the long-lived evidence in favour of active mantle (cf. plume) influences with subordinate and localized tectonic shortening, implicit within the review of ca. 3.1–2.05 Ga geological history of the Kaapvaal Craton, might reflect the influence of earlier Precambrian mantle-dominated thermal systems, at least for this craton.
机译:我们简要地研究了超大陆周期的可能远古时代,同时指出了> 1.8 Ga的古地磁数据可能的不可靠性,假设从岩浆为主的哈迪亚地球向板块构造为主导的新古生界系统逐渐变化。简要回顾了地球上最古老的克拉通之一,Kaapvaal,其重音放在大约20年以来其覆盖岩石的岩石地层学和地球动力学-年代史上。 3.1至2.05 Ga,构成本文的事实基础。该ca。 3.1–2.8 Ga Witwatersrand–Pongola(超群)复杂的弧后前陆盆地发育,克拉通仍在生长和稳定。北部和西部相对较小的花岗岩-片麻岩-绿岩复合岩地(岛弧复合体)的吸积不支持新古生界超大陆的形成,但很可能与地幔柱有关,地幔柱增加了在该地体中的主要金矿源并可能通过板收敛过程控制克拉通的生长时间和速率。威特沃特斯兰德盆地随后发生的形变,伴随地层损耗≤1.5km,一定是由于远场构造效应引起的,但是没有已知的活动带甚至绿岩带与这种收缩事件有关。约于2714–2709 Ma,一个大的地幔柱撞击在Witwatersrand盆地下面变薄的地壳下方,在Ventersdorp超群底部形成了厚厚的局部科迈特洪泛型玄武岩,随后的热隆起导致了盆地中部的双峰火山和未成熟沉积物的堆积。最后(可能在大约2.66–2.68 Ga处),热沉降使最高的Ventersdorp片状熔岩和沉积物沉积,并且仍存在少量科马提岩。因此推断出持续的羽流相关影响,并且类似的原因归因于ca。 2.66–2.68的Ga堤防群在Ventersdorp北部,那里的裂谷使特瓦斯瓦尔的离散“原始”储层形成(大约2.6–2.05的Ga超群,保存在三个盆地中)。这些最低的裂谷填充物上方的薄片状河床砂岩(黑礁形成,未标出)显示出与约翰内斯堡以北的古兰特背斜背向的局部压缩形变有关,但同样没有证据表明与Kaapvaal有任何主要的地层合并。从大约在2642年至2432年间,克拉通被一个长寿命的表层海相碳酸盐岩带状铁形成平台淹没,覆盖了其中大部分,并保存在所有三个德瓦瓦尔盆地(TB)中。在此一般期间,大约2691–2610年间,Kaapvaal Craton与北部的一个异国小地[中央区(CZ),林波波带]相撞。尽管远场构造效应很可能隐含在结核病的地球动力学中,但仍然没有理由进行超大陆形成。在80-200百万年(?)的裂隙之后,随着局部变形和沿古兰特背斜背斜去除了大厚度的化学沉淀沉积物,Transvaal超群的最上层的比勒陀利亚群得以沉积。这反映了与火山活动有关的两次裂谷事件,以及随后在凹陷盆地环境中的热沉降。第二个此类事件与洪水玄武岩的关联支持羽羽相似性。约于2050年,布什维尔德综合体侵入了北部的Kaapvaal Craton,并反射出大量羽状流,随后Kaapvaal-CZ与津巴布韦Craton发生了碰撞,这是第一次有强大的证据表明一个小的超大陆集会存在于大约摄氏60度。 2.0 Ga。我们假设长期以来支持活动地幔的证据(参见羽状流)会影响从属和局部构造缩短,这在ca. 3.1–2.05 Kaapvaal Craton的Ga地质历史,可能反映了前寒武纪前地幔主导的热力系统的影响,至少对于该克拉通而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号