...
首页> 外文期刊>International Geology Review >Colorado Plateau: Geoid and Means of Isostatic Support
【24h】

Colorado Plateau: Geoid and Means of Isostatic Support

机译:科罗拉多高原:大地水准线和等静压方式

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The Colorado Plateau underwent 1.5 to 2 km of surface uplift from near sea level during Late Cretaceous time. Neither the mechanism nor the timing of the uplift are well constrained. Knowledge of how the current topography of the Plateau is isostatically compensated could provide direct constraints on the mechanism, and perhaps indirect constraints on the timing, of uplift. Crustal thickening and/or decreases in mantle density must provide the buoyancy required for the uplift. These two modes have very different tectonic implications, and result in quite different average depths of the compensating mass deficits, potentially detectable with geoid anomalies. Geoid anomalies caused by long-wavelength continental topography are proportional to lit elevation multiplied by the mean depth of compensation. Thus, for a particular elevation, the greater the average depth of the isostatic "root," the larger the geoid anomaly. The main complication in analyzing geoid data for this kind of problem is separating lithospheric geoid anomalies from those with deeper sources. especially those that arise in the lower mantle. The anomalies shown here were obtained by high-pass spherical harmonic filtering of the order-360 EGM96 geoid with a cosine taper between orders 7 and 11. Taking the point-by-point ration of filtered geoid to topography at 0.25 deg resolution, the Colorado shows a moderate geoid/topography ratio of 6-8 m/km. The small amplitude of these geoid anomalies favors isostatic compensation of Colorado Plateau topography at depths of around 50 km, matching approximate Moho depths, and certainly shallower than asthenospheric depths of 80 km or greater. Mechanical or thermal lithospheric thickness changes may also contribute to the buoyancy that drove the uplift, but models involving strictly thermal thinning of the lithosphere still require crustal thickening. Some models that involve crustal thickening acting alone succeed in matching the elevation and geoid anomalies over he Colorado Plateau. Most plausibly, such thickening would have been Laramide in age. The only viable alternative to shallow compensation is mechanical loss of an ancient dense, deep lithospheric root in Late Cretaceous time, because the Plateau's elevation was near sea level for all of the Phanerozoic before the end of the Mesozoic.
机译:白垩纪晚期,科罗拉多高原从近海平面经历了1.5至2 km的地表隆升。抬升的机制和时间都没有受到很好的限制。对高原当前地形如何进行等静压补偿的了解,可能会对该机制产生直接的约束,甚至可能对隆起的时间产生间接的约束。地壳增厚和/或地幔密度降低必须提供隆升所需的浮力。这两种模式具有非常不同的构造意义,并且导致补偿质量赤字的平均深度存在很大差异,大地水准面异常可能会检测到这些深度。由长波大陆形貌引起的大地水准面异常与高程照度乘以平均补偿深度成正比。因此,对于特定的高程,等静压“根”的平均深度越大,大地水准面异常就越大。分析此类问题的大地水准面数据的主要复杂之处是将岩石圈大地水准面异常与深层水准异常分开。特别是在下地幔中出现的那些。此处显示的异常是通过对360级EGM96大地水准面进行高通球谐滤波而得到的,其余弦锥度在7到11级之间。以滤波后的大地水准面的点对点比率以0.25度的分辨率对地形进行测量,科罗拉多显示适中的大地水准面/地形比为6-8 m / km。这些大地水准面异常的小振幅有利于科罗拉多高原地形在约50 km深度处进行等静补偿,与Moho深度相匹配,并且肯定比80 km或更大的软流层深度浅。机械的或热的岩石圈厚度变化也可能导致浮力升高,但严格涉及岩石圈热减薄的模型仍需要地壳增厚。一些单独涉及地壳增厚的模型成功地匹配了科罗拉多高原上的高程和大地水准面异常。最有可能的是,这种增稠在年龄上可能是Laramide。浅层补偿的唯一可行替代方法是在白垩纪晚期对古老的致密深岩石圈根部进行机械损失,因为在中生代结束之前,高原的海拔都接近所有古生代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号