...
首页> 外文期刊>International Journal for Numerical Methods in Fluids >Fourth-order method for solving the Navier-Stokes equations in a constricting channel
【24h】

Fourth-order method for solving the Navier-Stokes equations in a constricting channel

机译:收缩通道中求解Navier-Stokes方程的四阶方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order.
机译:在压缩的对称通道中,对四维数值方法求解二维非均匀正交网格上流函数/涡度公式中的Navier-Stokes方程进行了测试。使用共形变换,然后非均匀拉伸网格单元,以代数方式生成网格族,其中通道边界的形状可以从光滑的收缩变到具有非常尖锐但光滑的角的收缩。网格的通用性允许在上游和下游使用长通道,并在尖角附近具有精致的网格。控制方程式中的导数被四阶中心差所取代,并且在离散化之前或之后消除了涡度,从而形成了一个用于流函数的宽差分子。 Henshaw等人提出的程序提供了宽分子方法所必需的额外边界条件。随后的一组非线性方程式是使用牛顿迭代法求解的。对于三个缩颈,雷诺数最高为250的结果已获得,第一个缩颈是平滑的,第二个缩颈具有适度的尖角,第三个缩颈具有非常尖的角。对产生的误差的估计表明,结果非常准确,并且比相应的二阶方法的结果要好得多。已观察到该方法的阶次接近四,表明该方法是真正的四阶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号