...
首页> 外文期刊>International Journal for Computational Methods in Engineering Science and Mechanics >Study on Topology Optimization under Multiple Loading Conditions and Stress Constraints based on EFG Method
【24h】

Study on Topology Optimization under Multiple Loading Conditions and Stress Constraints based on EFG Method

机译:基于EFG方法的多工况应力约束下的拓扑优化研究。

获取原文
获取原文并翻译 | 示例
           

摘要

By choosing the density of particle as the design variables, a new implementation method of topology optimization is presented based on the Element-free Galerkin (EFG) method in this paper, in which the optimal objective is to minimize structural compliance. The advantage of using nodal density is that the displacement and density in the influence domain have the same approximation scheme, and the smoothness of the density field can be improved. Nodal density method presented can prevent the checkerboard from the mathematical model proposed. The topology optimal model based on EFG method under multiple loading cases and stress constraints is proposed, and the sensitivity analysis of optimal design is derived in detail. By using solid isotropic material with penalization (SIMP) method and optimality criteria (OC) method, an algorithm of topology optimization based on the EFG method is presented. The shortcoming of using nodal density can be overcome by introducing the penalty function method. Three topology optimal examples are solved successfully and test the model and algorithm proposed. The results obtained show that the checkerboard phenomenon arisen in topology optimization is not found, and the method proposed is not only effective in suppressing checkerboards but also has better convergence.
机译:通过选择粒子的密度作为设计变量,提出了一种基于无元素伽勒金(EFG)方法的拓扑优化新方法,其最佳目的是使结构的柔顺性最小。使用节点密度的优点在于,影响域中的位移和密度具有相同的近似方案,并且可以提高密度场的平滑度。提出的节点密度方法可以防止棋盘格与提出的数学模型相抵触。提出了基于EFG方法的多载荷工况和应力约束下的拓扑优化模型,并详细推导了优化设计的敏感性分析。结合罚分的固体各向同性材料(SIMP)和最优性标准(OC)方法,提出了一种基于EFG方法的拓扑优化算法。通过引入罚函数法可以克服使用节点密度的缺点。成功解决了三个拓扑最优实例,并测试了所提出的模型和算法。结果表明,未发现拓扑优化过程中出现的棋盘现象,所提出的方法不仅有效抑制了棋盘,而且收敛性更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号