...
首页> 外文期刊>Applied optics >TWYMAN EFFECT MECHANICS IN GRINDING AND MICROGRINDING
【24h】

TWYMAN EFFECT MECHANICS IN GRINDING AND MICROGRINDING

机译:磨削和微磨削中的TWYMAN效应机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the Twyman effect (1905), when one side of a thin plate with both sides polished is ground, the plate bends: The ground side becomes convex and is in a state of compressive residual stress, described in terms of force per unit length (Newtons per meter) induced by grinding, the stress (Newtons per square meter) induced by grinding, and the depth of the compressive layer (micrometers). We describe and correlate experiments on optical glasses from the literature in conditions of loose abrasive grinding (lapping at fixed nominal pressure, with abrasives 4-400 mu m in size) and deterministic microgrinding experiments (at a fixed infeed rate) conducted at the Center for Optics Manufacturing with bound diamond abrasive tools (with a diamond size of 3-40 mu m, embedded in metallic bond) and loose abrasive microgrinding (abrasives of less than 3 mu m in size). In brittle grinding conditions, the grinding force and the depth of the compressive layer correlate well with glass mechanical properties describing the fracture process, such as indentation crack size. The maximum surface residual compressive stress decreases, and the depth of the compressive layer increases with increasing abrasive size. In lapping conditions the depth of the abrasive grain penetration into the glass surface scales with the surface roughness, and both are determined primarily by glass hardness and secondarily by Young's modulus for various abrasive sizes and coolants. In the limit of small abrasive size (ductile-mode grinding), the maximum surface compressive stress achieved is near the yield stress of the glass, in agreement with finite-element simulations of indentation in elastic-plastic solids. (C) 1996 Optical Society of America [References: 46]
机译:在Twyman效应(1905)中,将薄板的一面进行了双面抛光后,其板会弯曲:板侧会变成凸面,并处于压缩残余应力状态,以每单位长度的力表示(研磨引起的牛顿/米),研磨引起的应力(牛顿/平方米)和压缩层的深度(微米)。我们描述并关联了文献中光学玻璃的实验,这些实验是在中心进行的松散磨料研磨(在固定的标称压力下研磨,磨料尺寸为4-400微米)和确定性微研磨实验(以固定的进料速度)下进行的。使用绑定的金刚石磨具(金刚石尺寸为3-40μm,嵌入金属结合剂)和松散的磨料微磨(尺寸小于3μm的磨料)进行光学制造。在脆性磨削条件下,磨削力和压缩层的深度与描述断裂过程的玻璃机械性能(例如压痕裂纹尺寸)密切相关。最大表面残余压应力减小,并且随着磨料尺寸的增加,压缩层的深度增加。在研磨条件下,磨料颗粒渗入玻璃表面的深度随表面粗糙度而成比例,两者主要取决于玻璃的硬度,其次取决于各种磨料尺寸和冷却剂的杨氏模量。在较小的磨料尺寸(延性模式磨削)的限制下,获得的最大表面压缩应力接近玻璃的屈服应力,这与弹塑性固体中压痕的有限元模拟相符。 (C)1996年美国眼镜学会[参考文献:46]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号