...
首页> 外文期刊>Applied optics >Ion-beam machining of millimeter scale optics
【24h】

Ion-beam machining of millimeter scale optics

机译:毫米级光学器件的离子束加工

获取原文
获取原文并翻译 | 示例
           

摘要

An ion-beam microcontouring process is developed and implemented for figuring millimeter scale optics. Ion figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target substrate to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional machining processes, are avoided. Ion-beam figuring is presented as an alternative for the final figuring of small (<1-mm) optical components. The depth of the material removed by an ion beam is a convolution between the ion-beam shape and an ion-beam dwell function, defined over a two-dimensional area of interest. Therefore determination of the beam dwell function from a desired material removal map and a known steady beam shape is a deconvolution process. A wavelet-based algorithm has been developed to model the deconvolution process in which the desired removal contours and ion-beam shapes are synthesized numerically as wavelet expansions. We then mathematically combined these expansions to compute the dwell function or the tool path for controlling the figuring process. Various models have been developed to test the stability of the algorithm and to understand the critical parameters of the figuring process. The figuring system primarily consists of a duo-plasmatron ion source that ionizes argon to generate a focused (~200-μm FWHM) ion beam. This beam is rastered over the removal surface with a perpendicular set of electrostatic plates controlled by a computer guidance system. Experimental confirmation of ion figuring is demonstrated by machining a one-dimensional sinusoidal depth profile in a prepolished silicon substrate. This profile was figured to within a rms error of 25 nm in one iteration.
机译:开发并实施了离子束微轮廓工艺,以计算毫米级光学器件。离子刻蚀是一种非接触式加工技术,其中高能离子束被导向目标基板,以预定且可控的方式去除材料。由于这种非接触的材料去除方式,避免了在常规机加工过程中常见的与刀具磨损和边缘效应有关的问题。离子束塑像是对小尺寸(<1-mm)光学组件进行最终塑像的一种替代方法。被离子束去除的材料的深度是在感兴趣的二维区域上定义的离子束形状和离子束驻留函数之间的卷积。因此,根据期望的材料去除图和已知的稳定光束形状来确定光束停留功能是去卷积过程。已经开发了一种基于小波的算法来对反卷积过程进行建模,在该过程中,所需的去除轮廓和离子束形状被数字合成为小波展开。然后,我们通过数学方式将这些扩展组合起来,以计算驻留函数或用于控制加工过程的刀具路径。已经开发了各种模型来测试算法的稳定性并了解加工过程的关键参数。该图形系统主要由一个双等离子体激元离子源组成,该离子源使氩离子化以产生聚焦的(约200μmFWHM)离子束。该光束被一组垂直的静电板光栅化在去除表面上,该静电板由计算机制导系统控制。通过在预抛光的硅基板上加工一维正弦深度轮廓来证明对离子图形的实验确认。一次迭代计算出该分布图的均方根误差在25 nm以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号