...
首页> 外文期刊>Applied biochemistry and biotechnology, Part A. enzyme engineering and biotechnology >Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast (Conference Paper)
【24h】

Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast (Conference Paper)

机译:通过整合甲羟戊酸酯和甲基赤藓糖醇磷酸途径在酵母中开发基于Petri网的动态模型以提高焦磷酸法呢酯的生产(会议论文)

获取原文
获取原文并翻译 | 示例
           

摘要

In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.
机译:在此案例研究中,我们使用具有扩展功能的混合Petri网(HFPNe)设计了一种法尼基焦磷酸(FPP)生物合成网络,该网络衍生自传统Petri网理论,并可以通过网络中各种类型实体的图形化方法轻松进行建模。我们的主要目标是提高酵母中FPP的产量,然后将其进一步转化为青蒿素(抗疟药)的前体吗啡二烯(AD)。天然地,甲羟戊酸(MEV)途径存在于酵母中。甲基赤藓糖醇磷酸途径(MEP)仅存在于高等植物质体和真细菌中,而酵母中则不存在。 IPP和DAMP是这两个途径中的常见异构中间体,可立即产生FPP。通过整合酵母中的这两种途径,我们使用HFPNe技术将FPP合成提高了约两倍(单独的MEV途径(259.91 U / pt))两倍(431.16 U / pt)。进一步提高的FPP水平被吗啡二烯合酶基因转化为AD,产生的AD为436.5 U / pt,这与仅通过MEV途径合成的AD(258.5 U / pt)相比大约高出两倍。使用这些模型进行的仿真和验证过程对于已识别的生物学信息和数据是可靠的。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号