...
首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters
【24h】

Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

机译:黄石国家公园热温泉水的硫地球化学:IV硫酸盐水

获取原文
获取原文并翻译 | 示例
           

摘要

Many waters sampled in Yellowstone National Park, both high-temperature (30-94 degrees C) and low-temperature (0-30 degrees C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature). and acidity pH were in close agreement for pH < 2.7. Field pH measurements were predominantly used because the charge imbalance was < +/- 10%. When the charge imbalance was generally >+/- 10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing. and the temperature-dependence of pK(2) for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values <3. The highest SO4 concentrations, in the thousands of mg/L, result from evaporative concentration at elevated temperatures as shown by the consistently high delta O-18 values (-10 parts per thousand to -3 parts per thousand) and a delta D vs. delta O-18 slope of 3, reflecting kinetic fractionation. Low SO4 concentrations (<100 mg/L) for thermal waters (>350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As. Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations Of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH. Published by Elsevier Ltd.
机译:在黄石国家公园采样的许多水(高温(30-94摄氏度)和低温(0-30摄氏度))均为酸性硫酸盐型,pH值为1-5。硫酸是主要成分,尤其是在pH值降低到3以下时,它是由元素S的氧化形成的,元素S的起源是深处热液沸腾产生的热气体中的H 2S。获得了四项pH值的测定:(1)现场温度下的现场pH;(2)实验室温度下的实验室pH;(3)基于酸度滴定的pH;以及(4)基于电荷不平衡的pH(在实验室和现场温度下) )。实验室pH,电荷不平衡pH(在实验室温度下)。 pH <2.7时,pH值与酸度密切相关。主要使用现场pH测量,因为电荷不平衡度<+/- 10%。当电荷不平衡通常> +/- 10%时,将使用选择过程来比较酸度,实验室和电荷平衡pH,以得出最佳估计值。可以根据Fe氧化,H2S或S2O3氧化,CO2脱气来解释实验室pH值和现场pH值之间的差异。以及H2SO4的pK(2)的温度依赖性。对于pH值<3,表明电荷不平衡取决于物种模型。最高的SO4浓度,以千毫克/升计,是由于高温下的蒸发浓度所致,如持续高的O-18值(-10千分之一至-3千分之一)和δD vs. δO-18斜率为3,反映了动力学分级。随着沸腾Cl-浓度的增加,热水中的SO4浓度低(<100 mg / L)随Cl-浓度的增加而降低,这似乎与H2S氧化作为水热SO4来源的假设不一致。这种趋势与硬石膏溶解度平衡的另一假设一致。酸硫酸水分析的砷含量有时不高。 Hg和NH3浓度,但与酸性矿泉水相比,它们的Cu,Zn,Cd和Pb浓度低至检测不到。与相同pH值的酸性矿井水相比,热水中的SO4,Fe和Al浓度甚至要低得多。水化学上的这种差异可以解释为什么某些蝇类幼虫能够在黄石的酸性水中舒适地生活,而在相同pH的酸性岩石排水中却未观察到这种现象。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号