...
首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Hydrochemical baseline condition of groundwater at the Mizunami underground research laboratory (MIU)
【24h】

Hydrochemical baseline condition of groundwater at the Mizunami underground research laboratory (MIU)

机译:水浪地下研究室(MIU)地下水的水化学基线条件

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a "baseline condition model" describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na-Ca-HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na-(Ca)-Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their C-14 contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water-rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na-Ca-HCO3 type of groundwater, and mixing between "low-salinity water" in the shallow part and "higher-salinity water" in the deeper part of the granite in the Na-(Ca)-Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water-rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of -400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model. (c) 2005 Elsevier Ltd. All rights reserved.
机译:研究了位于水波地下研究实验室周围地下1000 m深度的水化学条件,以构建一个“基准条件模型”,该模型描述了在日本岐阜市水波地下挖掘地下设施之前不受干扰的水化学环境。该地区的地下水化学在沉积岩层序的上部分为Na-Ca-HCO3型地下水,在沉积岩层序和基层花岗岩的较深部分为Na-(Ca)-Cl型地下水。根据C-14含量,地下水的停留时间在沉积岩的中部约为9.3 ka,而在花岗岩深部则超过50 ka。据推测,这些地下水的演化过程是水-岩石相互作用,例如斜长石的风化,Na-Ca-HCO3型地下水中海洋硫酸盐/硫化物矿物和碳酸盐矿物的溶解以及“低盐度水”之间的混合。 Na-(Ca)-Cl型地下水在花岗岩的较浅部分和“较高盐分的水”中。花岗岩深部的盐度来源可能是古水热水或中新世补充的化石海水,随后通过长期的水-岩相互作用而被修饰。花岗岩地下水的Cl深度趋势在海平面以下-400 m的深度变化。据推断,在此深度下,花岗岩中控制地下水流动和/或混合过程(如对流和扩散)的水文地质特性不同。这种水化学概念模型不仅在构建用于评估MIU设施建设和运营期间的水化学干扰的数值模型时,而且在确定水文地质模型时都是必不可少的。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号