...
首页> 外文期刊>Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry >Numerical simulation of CO2 disposal by mineral trapping in deep aquifers
【24h】

Numerical simulation of CO2 disposal by mineral trapping in deep aquifers

机译:深层含水层矿物捕集处置CO2的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon dioxide disposal into deep aquifers is a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO2 disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO2 injection, the authors have analyzed the impact of CO2 immobilization through carbonate mineral precipitation. Batch reaction modeling of the geochemical evolution of 3 different aquifer mineral compositions in the presence of CO2 at high pressure were performed. The modeling considered the following important factors affecting CO2 sequestration: (1) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, (2) CO2 solubility dependence on pressure, temperature and salinity of the system, and (3) redox processes that could be important in deep subsurface environments. The geochemical evolution under CO2 injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO2 sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount Of CO2 that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO2 dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of Fe(III) mineral precursors such as goethite or glauconite. The accumulation of carbonates in the rock matrix leads to a considerable decrease in porosity. This in turn adversely affects permeability and fluid flow in the aquifer. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters. (C) 2003 Elsevier Ltd. All rights reserved.
机译:将二氧化碳排入深层含水层是减少大气中温室气体排放的潜在手段。但是,如果要安全,高效且可预测地实施该技术,则必须完善我们对二氧化碳处理的地理水文学,地球化学,地球物理学和地球力学的知识。作为完全耦合处理二氧化碳注入的物理和化学作用的序言,作者分析了碳酸盐矿物沉淀对二氧化碳固定化的影响。在高压下,在CO2存在下,对3种不同的含水层矿物组成的地球化学演化进行了批处理反应建模。该模型考虑了以下影响CO2固存的重要因素:(1)主体岩石矿物与水相之间化学相互作用的动力学;(2)CO2溶解度对系统压力,温度和盐度的依赖性;以及(3)氧化还原在深层地下环境中可能很重要的过程。评价了二氧化碳注入条件下的地球化学演化。另外,在模拟过程中监测孔隙率的变化。结果表明,基质矿物对CO 2的固存量随岩石类型的不同而有很大差异。在有利的条件下,可被次生碳酸盐沉淀而隔离的CO2数量可与CO2在孔隙水中溶解的影响相当,并且可能更大。铁矿和菱铁矿的沉淀对针铁矿或青绿铁矿的Fe(III)矿物前体的还原速率很敏感。碳酸盐在岩石基质中的积累导致孔隙度的显着降低。这反过来对含水层中的渗透率和流体流动产生不利影响。这里描述的数值实验提供了对隔离机制及其控制地球化学条件和参数的有用见解。 (C)2003 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号