...
首页> 外文期刊>Journal of Low Power Electronics >A 50 μW Microbial Fuel Cell Isolated Energy Harvesting Interface Based on Air Coupled Inductors
【24h】

A 50 μW Microbial Fuel Cell Isolated Energy Harvesting Interface Based on Air Coupled Inductors

机译:一种基于空气耦合电感器的50℃微生物燃料电池隔离能量收集界面

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial fuel cells (MFCs) are emerging energy harvesters that are promising for the autonomous supply of remote sensors on the seabed. The low voltage delivered by the MFC's, a few 100 mV, imposes an electrical interface to boost the latter to the sensor's needs. The flyback in discontinuousconduction mode appears to be the best candidate since it allows the maximum power delivered by the MFC to be extracted, the sensor to be electrically isolated from the source and the voltage to be boosted that required by the energy buffering. Our previous work highlighted the significantimpact of the magnetic core loss due to hysteresis and magnetic saturation even at μ -scale energy transfer. In this paper, we propose to remove the magnetic core to suppress these losses. The low density harvested power (100 μ W for 10th cm~(2) electrodes) and low-sizeconstraint i.e., 1 m~(2) scale in seabed remote sensors applications allows us to use 0.5 m~(2) air-core inductance by plugging in a 20-cm~(2) MFC, delivering a maximum power of 90 μ W at 0.3 V. The proposed air-core coupled inductor based flyback achieved60% efficiency experimentally from end to end peak. These results are 10% lower than those achieved with a magnetic core. This decrease is due to the increase in the losses generated in the active components. However, the experimental results are in good agreement with simulations in whicha model of the coreless coupled inductances, extracted from characterizations, is used. Finally, potential improvements linked to custom designed components due to progress in active components such as transistors and diodes are also discussed. A thorough analysis led us to think that in thefuture, the coreless solution may surpass its magnetic counterpart, and hence become a viable alternative.
机译:微生物燃料电池(MFC)是一种新兴的能源采集器,有望在海底自主提供遥感器。MFC提供的低电压只有几百毫伏,因此需要一个电气接口,以满足传感器的需要。不连续传导模式下的反激似乎是最佳选择,因为它允许提取MFC提供的最大功率,将传感器与电源进行电气隔离,并将电压提升到能量缓冲所需的水平。我们之前的工作强调了磁滞和磁饱和对磁芯损耗的重要影响,即使在μ尺度的能量转移下也是如此。在本文中,我们建议移除磁芯以抑制这些损耗。海底遥感器应用中的低密度收获功率(10 cm~(2)电极为100μW)和低尺寸应变,即1 m~(2)尺度,使我们能够通过插入20 cm~(2)MFC使用0.5 m~(2)空心电感,在0.3 V下提供90μW的最大功率。提出的基于空心耦合电感的反激技术在实验上从端到端峰值达到了60%的效率。这些结果比用磁芯获得的结果低10%。这一减少是由于有源元件中产生的损耗增加。然而,实验结果与模拟结果一致,模拟中使用了从特征提取的无芯耦合电感模型。最后,还讨论了由于晶体管和二极管等有源元件的发展,与定制设计元件相关的潜在改进。彻底的分析使我们认为,在未来,无芯解决方案可能会超过磁性解决方案,从而成为一种可行的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号