...
首页> 外文期刊>Journal of Low Power Electronics >A 50 μW Microbial Fuel Cell Isolated Energy Harvesting Interface Based on Air Coupled Inductors
【24h】

A 50 μW Microbial Fuel Cell Isolated Energy Harvesting Interface Based on Air Coupled Inductors

机译:一种基于空气耦合电感器的50℃微生物燃料电池隔离能量收集界面

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial fuel cells (MFCs) are emerging energy harvesters that are promising for the autonomous supply of remote sensors on the seabed. The low voltage delivered by the MFC's, a few 100 mV, imposes an electrical interface to boost the latter to the sensor's needs. The flyback in discontinuousconduction mode appears to be the best candidate since it allows the maximum power delivered by the MFC to be extracted, the sensor to be electrically isolated from the source and the voltage to be boosted that required by the energy buffering. Our previous work highlighted the significantimpact of the magnetic core loss due to hysteresis and magnetic saturation even at μ -scale energy transfer. In this paper, we propose to remove the magnetic core to suppress these losses. The low density harvested power (100 μ W for 10th cm~(2) electrodes) and low-sizeconstraint i.e., 1 m~(2) scale in seabed remote sensors applications allows us to use 0.5 m~(2) air-core inductance by plugging in a 20-cm~(2) MFC, delivering a maximum power of 90 μ W at 0.3 V. The proposed air-core coupled inductor based flyback achieved60% efficiency experimentally from end to end peak. These results are 10% lower than those achieved with a magnetic core. This decrease is due to the increase in the losses generated in the active components. However, the experimental results are in good agreement with simulations in whicha model of the coreless coupled inductances, extracted from characterizations, is used. Finally, potential improvements linked to custom designed components due to progress in active components such as transistors and diodes are also discussed. A thorough analysis led us to think that in thefuture, the coreless solution may surpass its magnetic counterpart, and hence become a viable alternative.
机译:微生物燃料电池(MFC)是出现的能量收割机,这是对海底偏远传感器的自主供应。由MFC提供的低压,几个100 MV,施加了电气接口,以提升后者以传感器的需求。在不连续式调节模式中的反激,似乎是最佳候选,因为它允许提取MFC传递的最大功率,传感器从源电源隔离,并且能量缓冲所需的电压被升高。我们以前的工作突出显示由于磁芯损耗引起的磁芯损失,即使在μScale能量转移。在本文中,我们建议去除磁芯以抑制这些损失。低密度收获功率(10μW为10厘米〜(2)电极)和低级偏振仪,即海底偏远传感器应用中的1 m〜(2)刻度允许我们使用0.5 m〜(2)空心电感通过插入20-cm〜(2)MFC,在0.3 V中提供90μW的最大功率。所提出的基于空心耦合电感的反激从端到端峰值实验地实现了60%效率。这些结果比用磁芯实现的结果低10%。这种减少是由于活性成分中产生的损失的增加。然而,实验结果与从表征提取的无核耦合电感的模型有关的仿真吻合良好。最后,还讨论了与定制设计组件相关的潜在改进,这是由于诸如晶体管和二极管的有源部件的进展。彻底的分析导致我们思考在实验中,无芯解决方案可能超过其磁对手,因此成为可行的替代方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号