...
首页> 外文期刊>Global change biology >Phosphorus in agricultural soils: drivers of its distribution at the global scale
【24h】

Phosphorus in agricultural soils: drivers of its distribution at the global scale

机译:农业土壤中的磷:其在全球范围内分布的驱动因素

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB. When the spatial variability was computed between grid cells at half-degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号