...
首页> 外文期刊>Angewandte Chemie >Ir-Catalyzed Borylation of CH Bonds in N-Containing Heterocycles: Regioselectivity in the Synthesis of Heteroaryl Boronate Esters
【24h】

Ir-Catalyzed Borylation of CH Bonds in N-Containing Heterocycles: Regioselectivity in the Synthesis of Heteroaryl Boronate Esters

机译:含氮杂环中CH键的Ir催化硼氢化反应:杂芳基硼酸酯的合成中的区域选择性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aryl and heteroaryl boronates are very important, especially as intermediates for Suzuki-Miyaura cross-coupling reactions;[1] for the Cu-catalyzed CO and CN coupling reactions developed by Chan, Lam, and co-workers;[2] and for Rh-catalyzed conjugate additions to carbonyl compounds.[3] The most attractive potential synthesis of these boronate esters would be the direct borylation of CH bonds in arenes or heteroarenes themselves. A very exciting recent advance has been the development by Ishiyama et al.[4] and Smith and co-workers[5] of in situ prepared, suitably ligated analogues of the iridium tris(boryl) complexes discovered by us,[6] which catalyze the borylation of aromatic CH bonds under mild conditions. Density functional theory (DFT) calculations by Sakaki and co-workers,[7] in agreement with proposals from the experimental data, suggest that the key catalytic intermediate that leads to CH activation is the sterically encumbered, five-coordinate [Ir(Bpin)3L2] species (Bpin=B(OCMe2CMe2O)). This intermediate accounts for the selectivity observed, as borylation typically avoids positions ortho to either substituents or to ring junctions. We have taken advantage of this selectivity to prepare novel pyrene-2,6-bis(boronate) and perylene-2,5,8,11-tetra(boronate) esters amongst other polycyclic aryl boronates.[8] During the course of our studies on the system developed by Ishiyama et al. (L2=4,4-tBu2-2,2-bipyridine (dtbpy; 1 A)), we were intrigued that GC-MS analysis of the borylation reaction mixtures in situ did not show any borylation of the ligand 1 A, although 1 A could be detected by itself. We envisaged three possible reasons for this: 1) 1 A is firmly attached to the Ir center through the nitrogen atoms at all times; 2) it is simply not a suitable substrate for the catalyst, even if it were to dissociate; or 3) we would be unable to detect borylated 1 A by using our GC-MS method. We noted that pyridine itself is a poor substrate for the borylation reaction,[9], [10] whereas pyrrole and quinoline are readily borylated;[11] however, 2,6-chloropyridine and 2,6-dimethylpyridine were effectively borylated at the 4-position,[5], [12] and 5-bromo-2-cyanopyridine was borylated at the 3- and 4-positions in a 2:1 ratio.[13]
机译:芳基和杂芳基硼酸酯非常重要,特别是作为Suzuki-Miyaura交叉偶联反应的中间体; [1]对于Chan,Lam和同事开发的Cu催化的CO和CN偶联反应; [2]和Rh -羰基化合物的催化共轭加成。[3]这些硼酸酯的最有吸引力的潜在合成方法是芳烃或杂芳烃本身中CH键的直接硼化。石山等人[4]的发展是最近令人振奋的进步。和Smith和他的同事[5]原位制备,适当连接的我们发现的铱三(硼基)配合物的类似物[6],它们在温和条件下催化芳族CH键的硼化。 Sakaki及其同事的密度泛函理论(DFT)计算[7]与实验数据的建议一致,表明导致CH活化的关键催化中间体是空间受限的五坐标[Ir(Bpin) 3L2]种(Bpin = B(OCMe2CMe2O))。该中间体解释了观察到的选择性,因为硼化通常避免在取代基或环结的邻位。我们利用这种选择性来制备新型pyr-2,6-双(硼酸酯)和per-2,5,8,11-四(硼酸酯)以及其他多环芳基硼酸酯。[8]在我们对由Ishiyama等人开发的系统进行研究的过程中。 (L2 = 4,4-tBu2-2,2-联吡啶(dtbpy; 1 A)),我们很感兴趣的是,原位进行的硼化反应混合物的GC-MS分析未显示配体1 A的任何硼化,尽管1 A可以自己检测到。我们认为有以下三个可能的原因:1)1 A始终通过氮原子牢固地连接到Ir中心; 2)即使它解离了,它也根本不是催化剂的合适底物;或3)使用我们的GC-MS方法将无法检测到硼酸化的1A。我们注意到吡啶本身是硼酸酯化反应的不良底物,[9],[10]而吡咯和喹啉很容易被硼酸酯化; [11]但是,2,6-氯吡啶和2,6-二甲基吡啶在硼烷中被有效地硼化了。 4位,[5],[12]和5-溴-2-氰基吡啶在3位和4位以2:1的比例被硼化。[13]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号