...
首页> 外文期刊>Angewandte Chemie >Nonmechanical Protein Can Have Significant Mechanical Stability
【24h】

Nonmechanical Protein Can Have Significant Mechanical Stability

机译:非机械蛋白可以具有显着的机械稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Many proteins function as complex mechanochemical machinery in living cells to constantly sense, generate, and bear mechanical forces.[1] In addition to their biological importance, these mechanical proteins also arouse tremendous interest in nanoscience and technology and have been incorporated into nanomechanical devices for well-defined applications.[2]-[4] It is clear that these mechanical proteins will find a wide range of applications as building blocks for the bottom-up construction of functional nanomechanical devices.[4], [5] Elastomeric proteins are a special class of mechanical proteins.[6] They are placed under mechanical tension under physiological conditions and serve as molecular springs in a variety of biological machines and tissues to establish elastic connections and provide mechanical strength, elasticity, and extensibility.[6]-[13] Recent developments in single-molecule force spectroscopy have enabled the direct measurement of the mechanical stability and elasticity of elastomeric proteins at the single-molecule level.[7]-[10], [13]-[16] Combined with molecular dynamics (MD) simulations, single-molecule atomic force microscopy (AFM) studies have revealed rich information about the mechanical architecture and design of elastomeric proteins.[14], [17]-[23] Compared with proteins that commonly do not bear any mechanical functions under physiological conditions, mechanical proteins are just a small fraction of the total proteins inside cells. To construct multifunctional nanomechanical devices, it is desirable to extend single-molecule force-spectroscopic studies to include nonmechanical proteins (such as enzymes), as the abundant nonmechanical proteins may significantly expand the tool box of mechanical proteins, impart novel functionality, and enable applications such as force sensors[24] and switches. A prerequisite for these applications is that these nonmechanical proteins can withstand mechanical tension. It has been proposed that nonmechanical proteins may contain motifs of considerable mechanical stability;[25] however, most of the nonmechanical proteins that have been studied so far, such as barnase and carmodulin, are mechanically labile and only have marginal mechanical stability.[24], [26]-[30] Green fluorescent protein (GFP) is the strongest nonmechanical protein to date and has a mechanical stability of approximately 100 pN.[24] It remains a question whether nonmechanical proteins can have sufficient mechanical stability and be used for mechanical applications. Herein, we use single-molecule AFM and protein engineering to demonstrate that nonmechanical proteins, with desired structure and topology, can have significant mechanical stability.
机译:许多蛋白质在活细胞中起着复杂的机械化学机械的作用,不断感应,产生和承受机械力。[1]除了它们的生物学重要性外,这些机械蛋白还引起了纳米科学和技术的极大兴趣,并已被结合到用于明确应用的纳米机械装置中。[2]-[4]显然,这些机械蛋白的应用范围很广。作为自底向上构造功能纳米机械设备的基础材料的应用。[4],[5]弹性蛋白是一类特殊的机械蛋白。[6]它们在生理条件下处于机械张力下,并在各种生物机器和组织中充当分子弹簧以建立弹性连接并提供机械强度,弹性和可扩展性。[6]-[13]单分子力的最新发展光谱技术可以直接测量单分子水平上弹性蛋白的机械稳定性和弹性。[7]-[10],[13]-[16]结合分子动力学(MD)模拟,单分子原子力显微镜(AFM)研究揭示了有关弹性体蛋白质机械结构和设计的丰富信息。[14],[17]-[23]与在生理条件下通常不具有任何机械功能的蛋白质相比,机械蛋白质只是细胞内总蛋白质的一小部分。为了构建多功能的纳米机械装置,需要扩展单分子力光谱研究以包括非机械蛋白质(例如酶),因为丰富的非机械蛋白质可能会大大扩展机械蛋白质的工具箱,赋予新的功能并实现应用如力传感器[24]和开关。这些应用的先决条件是这些非机械蛋白可以承受机械张力。有人提出非机械蛋白可能包含相当大的机械稳定性的基序; [25]然而,到目前为止,已研究的大多数非机械蛋白,如barnase和carmodulin,在机械上都是不稳定的,仅具有有限的机械稳定性。[24] ],[26]-[30]迄今为止,绿色荧光蛋白(GFP)是最强的非机械蛋白,其机械稳定性约为100 pN。[24]非机械蛋白是否可以具有足够的机械稳定性并用于机械应用仍是一个问题。本文中,我们使用单分子AFM和蛋白质工程技术来证明具有所需结构和拓扑结构的非机械蛋白质可以具有显着的机械稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号