...
首页> 外文期刊>Angewandte Chemie >Two-Dimensional IR Pressure-Jump Spectroscopy of Adsorbed Species for Zeolites
【24h】

Two-Dimensional IR Pressure-Jump Spectroscopy of Adsorbed Species for Zeolites

机译:沸石吸附物质的二维红外跳压光谱

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Infrared spectroscopy of adsorbed probe molecules is a well established technique for the characterization of surface sites on zeolites and other solid catalysts. Time resolution in modern spectrometers increases the power of the technique for use with complex adsorption systems, with multiple adsorption sites and a microporous structure, by allowing the study of transient systems and of adsorption dynamics out of equilibrium. Step-scan Fourier transform interferometers can easily reach the microsecond timescale if the observation can be repeated with sufficient reproducibility. At this timescale, adsorbed molecules in a zeolite each have their eigen-response frequency to a pressure perturbation or modulation. Using pressure and temperature measurements, Rees and co-workers and Grenier and co-workers have explored the pressure modulation frequencies, indicated the frequencies for given adsorbates on given zeolites, and extracted diffusion kinetic parameters from their results. We thought we could use these eigen frequencies to extract spectral information for complex mixtures on surfaces. Thus, several adsorption sites, or several adsorbed molecules in a mixture, would each lead to a specific eigen-response frequency to a pressure modulation, and we could obtain the spectral signature for each individual species on each individual adsorption site. Instead of having to vary the modulation frequency progressively to explore the whole frequency domain, we decided to generate a square pressure wave on the surface (or more exactly a pressure jump), which would be equivalent to the generation of an infinite number of pressure oscillations with different frequencies (Figure 1). Such a pressure jump can be described as a shift of the adsorption in an excited state, with a relaxation by diffusion and adsorption equilibria. The relaxation process can be followed by fast time-resolved IR spectroscopy. The infrared spectra collected can be analysed by Fourier transform to extract the relaxation processes eigen frequencies, with correlations with the infrared frequencies. The technique is named IR pressure-jump spectroscopy of adsorbed species (PJAS-IR).
机译:吸附的探针分子的红外光谱法是表征沸石和其他固体催化剂表面位点的成熟技术。通过允许研究瞬态系统和不平衡的吸附动力学,现代光谱仪中的时间分辨率提高了用于具有多个吸附位点和微孔结构的复杂吸附系统的技术能力。如果可以以足够的可重复性重复观察,则步进扫描傅立叶变换干涉仪可以轻松达到微秒级的时标。在这个时间尺度上,沸石中吸附的分子各自具有对压力微扰或调制的本征响应频率。 Rees和同事以及Grenier和同事使用压力和温度测量,探索了压力调制频率,指出了给定沸石上给定吸附物的频率,并从结果中提取了扩散动力学参数。我们认为我们可以使用这些特征频率来提取表面上复杂混合物的光谱信息。因此,几个吸附位点或混合物中的几个吸附分子将各自导致对压力调制的特定本征响应频率,并且我们可以获得每个单独吸附位点上每个单独物种的光谱特征。不必逐渐改变调制频率来探索整个频域,我们决定在表面上产生方波压力波(或更确切地说是产生压力跳变),这等效于产生无限数量的压力振荡具有不同的频率(图1)。这样的压力跳跃可以描述为在激发态下的吸附的位移,由于扩散和吸附平衡而引起的弛豫。弛豫过程之后可以进行快速时间分辨的红外光谱。可以通过傅立叶变换分析收集的红外光谱,以提取弛豫过程的本征频率,并与红外频率相关。该技术被称为吸附物种的IR跳压光谱(PJAS-IR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号