...
首页> 外文期刊>Angewandte Chemie >Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores
【24h】

Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores

机译:由包含聚丙烯腈核的水溶性壳交联胶束制备的良好定义的碳纳米颗粒

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon-based materials have traditionally played an important role in modern technologies, ranging from the manufacture of everyday-use products such as automobile tires (carbon fillers), through reinforcements in composites (carbon fibers), electrode materials for a variety of processes, to activated carbons widely used in separation techniques, to name just a few. In addition to those commodity materials, in recent decades there has been a dynamic growth in the area of advanced engineering carbon materials. Seminal events in this area include the development of synthetic diamond and highly oriented pyrolytic graphite in 1960. In the last two decades, this field has been particularly reenergized by the discovery of fullerenes in 1985 and carbon nanotubes in 1991.[4] In addition to generating tremendous fundamental interest, these nanostructured forms of carbon have found, or are expected to find, numerous applications such as advanced fillers, materials for energy and gas storage, templates, nanoprobes and sensors, and elements for molecular electronics devices. Two main groups of strategies for the preparation of engineering carbon materials include: 1) pyrolysis of organic precursors (mostly polymeric) under inert atmosphere to yield large-scale engineering carbon materials and 2) physical/chemical vapor deposition techniques to produce well-defined nanostructured forms of carbon. Whereas techniques from the first group are applicable to large-scale production, they offer very limited control of the carbon (nano)structure. Techniques from the second group, while allowing for atomic-scale precision in nanostructure control, are relatively expensive, have limited yield, and require complex equipment.
机译:传统上,碳基材料在现代技术中起着重要作用,其范围从汽车轮胎(碳填充物)等日常产品的制造到复合材料(碳纤维)的增强,用于各种工艺的电极材料,再到活性炭广泛用于分离技术中,仅举几例。除了这些商品材料外,近几十年来,高级工程碳材料领域也有动态增长。该领域的开创性事件包括1960年合成金刚石和高取向热解石墨的开发。在过去的二十年中,1985年发现了富勒烯和1991年发现了碳纳米管,使这一领域特别焕发了活力。[4]这些碳纳米结构除了引起人们极大的兴趣外,还已经发现或有望找到许多应用,例如高级填料,用于储能和储气的材料,模板,纳米探针和传感器以及分子电子设备的元件。制备工程碳材料的两种主要策略包括:1)在惰性气氛下热解有机前体(主要是聚合物)以生产大规模的工程碳材料; 2)物理/化学气相沉积技术以生产定义明确的纳米结构碳的形式。尽管第一类技术适用于大规模生产,但它们对碳(纳米)结构的控制非常有限。第二组技术虽然可以在纳米结构控制中实现原子级的精度,但相对昂贵,产量有限且需要复杂的设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号