...
首页> 外文期刊>Angewandte Chemie >Efficient Visible-Light-Driven CO2 Reduction Mediated by Defect-Engineered BiOBr Atomic Layers
【24h】

Efficient Visible-Light-Driven CO2 Reduction Mediated by Defect-Engineered BiOBr Atomic Layers

机译:有效的可见光驱动的二氧化碳减少介导的缺陷工程化BioBR原子层

获取原文
获取原文并翻译 | 示例
           

摘要

Solar CO2 reduction efficiency is largely limited by poor photoabsorption, sluggish electron-hole separation, and a high CO2 activation barrier. Defect engineering was employed to optimize these crucial processes. As a prototype, BiOBr atomic layers were fabricated and abundant oxygen vacancies were deliberately created on their surfaces. X-ray absorption near-edge structure and electron paramagnetic resonance spectra confirm the formation of oxygen vacancies. Theoretical calculations reveal the creation of new defect levels resulting from the oxygen vacancies, which extends the photoresponse into the visible-light region. The charge delocalization around the oxygen vacancies contributes to CO2 conversion into COOH* intermediate, which was confirmed by insitu Fourier-transform infrared spectroscopy. Surface photovoltage spectra and time-resolved fluorescence emission decay spectra indicate that the introduced oxygen vacancies promote the separation of carriers. As a result, the oxygen-deficient BiOBr atomic layers achieve visible-light-driven CO2 reduction with a CO formation rate of 87.4molg(-1)h(-1), which was not only 20 and 24 times higher than that of BiOBr atomic layers and bulk BiOBr, respectively, but also outperformed most previously reported single photocatalysts under comparable conditions.
机译:太阳能二氧化碳减少效率主要受到差的光吸收,缓慢的电子 - 孔分离和高CO2活化屏障的限制。采用缺陷工程来优化这些关键程序。作为原型,制造BioBR原子层,在其表面上故意产生丰富的氧空位。 X射线吸收近边缘结构和电子顺磁共振光谱确认氧气空位的形成。理论计算揭示了由氧空位产生的新缺陷水平的创建,其将光响应延伸到可见光区域中。氧空位周围的电荷临床化有助于CO2转化为COOH *中间体,该中间体由Insitu傅立叶变换红外光谱证实。表面光伏光谱和时间分辨荧光发射衰减光谱表明引入的氧空位促进了载体的分离。结果,缺氧BioBR原子层实现了87.4molg(-1)H(-1)的CO形成速率的可见光驱动的CO2降低,其不仅仅是BioBR的20%和24倍分别是原子层和散装BioBR,但也优于最先前报道的单一光催化剂在可比条件下。

著录项

  • 来源
    《Angewandte Chemie》 |2018年第28期|共5页
  • 作者单位

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

    Univ Sci &

    Technol China Hefei Natl Lab Phys Sci Microscale Hefei 230026 Anhui Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用化学;
  • 关键词

    BiOBr atomic layers; carbon dioxide; oxygen vacancies; photocatalysis; surface defects;

    机译:Biobr原子层;二氧化碳;氧空位;光催化;表面缺陷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号