...
首页> 外文期刊>ACS nano >Resolving the Structure of a Well-Ordered Hydroxyl Overlayer on In2O3(111): Nanomanipulation and Theory
【24h】

Resolving the Structure of a Well-Ordered Hydroxyl Overlayer on In2O3(111): Nanomanipulation and Theory

机译:解决IN2O3(111)上有序羟基覆盖器的结构:纳米尺寸和理论

获取原文
获取原文并翻译 | 示例
           

摘要

Changes in chemical and physical properties resulting from water adsorption play an important role in the characterization and performance of device-relevant materials. Studies of model oxides with well characterized surfaces can provide detailed information that is vital for a general understanding of water-oxide interactions. In this work, we study single crystals of indium oxide, the prototypical transparent contact material that is heavily used in a wide range of applications and most prominently in optoelectronic technologies. Water adsorbs dissociatively already at temperatures as low as 100 K, as confirmed by scanning tunneling microscopy (STM), photoelectron spectroscopy, and density functional theory. This dissociation takes place on lattice sites of the defect-free surface. While the In2O3(111)-(1 X 1) surface offers four types of surface oxygen atoms (12 atoms per unit cell in total), water dissociation happens exclusively at one of them together with a neighboring pair of 5-fold coordinated In atoms. These O-In groups are symmetrically arranged around the 6-fold coordinated In atoms at the surface. At room temperature, the In2O3(111) surface thus saturates at three dissociated water molecules per unit cell, leading to a well-ordered hydroxylated surface with (1 X 1) symmetry, where the three water OWH groups plus the surface OSH groups are imaged together as one bright triangle in STM. Manipulations with the STM tip by means of voltage pulses preferentially remove the H atom of one surface OSH group per triangle. The change in contrast due to strong local band bending provides insights into the internal structure of these bright triangles. The experimental results are further confirmed by quantitative simulations of the STM image corrugation.
机译:水吸附引起的化学物质和物理性质的变化在装置相关材料的表征和性能中起重要作用。具有特征性表面的模型氧化物的研究可以提供对氧化氧化物相互作用的一般理解至关重要的详细信息。在这项工作中,我们研究了氧化铟的单晶,原型透明接触材料,在广泛的应用中,最突出地用于光电技术。通过扫描隧道显微镜(STM),光电子体光谱和密度泛函理论,通过扫描隧道显微镜(STM)确认,水覆盖的温度下降。这种解离发生在无缺陷表面的晶格位置。虽然In2O3(111) - (1×1)表面提供四种类型的表面氧原子(总共12个氧气细胞),但水解离在其中一个与原子中的相邻的5倍相同。这些O-型组在表面上配位的6倍围绕表面布置。在室温下,In2O3(111)表面如此饱和在每单位细胞的三个离解水分子中饱和,导致具有(1×1)对称的良好有序的羟基化表面,其中三个水ow族加上表面OSH组成像在stm中作为一个明亮的三角形。通过电压脉冲用STM尖端的操纵优先除去每个三角形的一个表面OSH组的H原子。由于强大的本地带弯曲导致对比的变化提供了对这些明亮三角形的内部结构的见解。通过STM图像波纹的定量模拟进一步证实了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号