...
首页> 外文期刊>ACS nano >Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D
【24h】

Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D

机译:在3D中成像多晶钯薄膜中个体颗粒的氢吸收动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Defects such as dislocations and grain boundaries often control the properties of polycrystalline materials. In nanocrystalline materials, investigating this structure-function relationship while preserving the sample remains challenging because of the short length scales and buried interfaces involved. Here we use Bragg coherent diffractive imaging to investigate the role of structural inhomogeneity on the hydriding phase transformation dynamics of individual Pd grains in polycrystalline films in three-dimensional detail. In contrast to previous reports on single- and polycrystalline nanoparticles, we observe no evidence of a hydrogen-rich surface layer and consequently no size dependence in the hydriding phase transformation pressure over a 125-325 nm size range. We do observe interesting grain boundary dynamics, including reversible rotations of grain lattices while the material remains in the hydrogen-poor phase. The mobility of the grain boundaries, combined with the lack of a hydrogen-rich surface layer, suggests that the grain boundaries are acting as fast diffusion sites for the hydrogen atoms. Such hydrogen-enhanced plasticity in the hydrogen poor phase provides insight into the switch from the size-dependent behavior of single-crystal nanoparticles to the lower transformation pressures of polycrystalline materials and may play a role in hydrogen embrittlement.
机译:诸如错位和晶界的缺陷通常控制多晶材料的性质。在纳米晶体材料中,根据涉及的长度尺度和埋地接口,在保存样本的同时调查这种结构功能关系仍然具有挑战性。在这里,我们使用布拉格相干衍射成像来研究结构不均匀性在三维细节中多晶膜中单个Pd颗粒的水晶相变动力学的作用。与先前的单晶纳米粒子上的报道相反,我们不观察到富氢表面层的证据,从而没有尺寸依赖于125-325nm尺寸范围内的水合相变压。我们遵守有趣的晶界动态,包括谷物格子的可逆转,而该材料保留在氢相较差的阶段。晶界的迁移率与缺乏富氢的表面层相结合,表明晶界是用作氢原子的快速扩散位点。氢相较差的这种氢增强的可塑性为从单晶纳米粒子的尺寸依赖性行为到多晶体材料的较低转化压力中的开关中的洞察力提供了洞察力,并且可以在氢气脆化中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号