...
首页> 外文期刊>ACS nano >Control of Elemental Distribution in the Nanoscale Solid-State Reaction That Produces (Ga1-xZnx)(N1-xOx),) Nanocrystals
【24h】

Control of Elemental Distribution in the Nanoscale Solid-State Reaction That Produces (Ga1-xZnx)(N1-xOx),) Nanocrystals

机译:控制纳米级固态反应中的元素分布(Ga1-XZNX)(N1- XX),)纳米晶体

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state chemical transformations at the nanoscale can be a powerful tool for achieving compositional complexity in nanomaterials It is desirable to understand the mechanisms of such reactions and characterize the local level composition of the resulting materials. Here, we examine how reaction temperature controls the elemental distribution in (Ga1-xZnx) (N1-xOx) nano crystals (NCs) synthesized via the solid-state nitridation of a mixture of nanoscale ZnO and ZnGa2O4 NCs. (Ga1-xZnx) (N1-xOx) is a visible-light absorbing semiconductor that is of interest for applications in solar photochemistry. We couple elemental mapping using energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDS) with colocation analysis to study the elemental distribution and the degree of homogeneity in the (Ga1-xZnx) (N1-xOx) samples synthesized at temperatures ranging from 650 to 900 degrees C with varying ensemble compositions (i.e., x values). Over this range of temperatures, the elemental distribution ranges from highly heterogeneous at 650 degrees C, consisting of a mixture of larger particles with Ga and N enrichment near the surface and very small NCs, to uniform particles with evenly distributed constituent elements for most compositions at 800 degrees C and above. We propose a mechanism for the formation of the (Ga1-xZnx) (N1-xOx) NCs in the solid state that involves phase transformation of cubic spinel ZnGa2O4 to wurtzite (Ga1-xZnx) (N1-xOx) and diffusion of the elements along with nitrogen incorporation. The temperature-dependence of nitrogen incorporation, bulk diffusion, and vacancy-assisted diffusion processes determines the elemental distribution at each synthesis temperature. Finally, we discuss how the visible band gap of (Ga1-xZnx) (N1-xOx) NCs varies with composition and elemental distribution.
机译:纳米尺度的固态化学转化可以是用于在纳米材料中实现成分复杂性的强大工具,希望了解这种反应的机制并表征所得材料的局部水平组成。在此,我们研究了反应温度如何控制通过纳米级ZnO和Znga2O4 NCs的混合物的固态氮化合成的(Ga1-XZNX)(N1-XZNX)(N1- XXX)纳米晶体(NCS)的元素分布。 (Ga1-xznx)(n1-xox)是一种可见光吸收半导体,对于太阳能光化学的应用感兴趣。耦合在扫描透射电子显微镜(STEM-EDS)中使用能量分散X射线光谱进行元素映射,通过聚置分析来研究合成的(GA1-XZNX)(N1-XXX)样本中的元素分布和均匀性程度在温度范围为650至900摄氏度,具有不同的整体组合物(即X值)。在这种温度范围内,元素分布在650℃的高度异质范围内,由表面和非常小的NCS附近具有Ga和N富集的较大颗粒的混合物,以均匀分布的组成元素用于大多数组合物800°C及以上。我们提出了一种在固态中形成(Ga1-XZNX)(N1-XXX)NCS的机制,所述固态涉及立方尖晶石Znga2O4的相变(Ga1-XZNX)(N1-XXX)(N1-XX)和元件的扩散用氮气掺入。氮掺入,块状扩散和空位辅助扩散过程的温度依赖性决定了每个合成温度的元素分布。最后,我们讨论了(Ga1-xznx)(N1-XX)NCS的可见带隙如何随组合物和元素分布而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号