...
首页> 外文期刊>ACS nano >Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation
【24h】

Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation

机译:通过亚纳米石墨烯孔的气体渗透机理和预测:理论与仿真比较

获取原文
获取原文并翻译 | 示例
           

摘要

Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO2 and CH4, through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO2 and CH4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO2/CH4 mixture, the graphene nanopores exhibit a trade-off between the CO(2)permeance and the CO2/CH4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO2/CH4 separation factors higher than 10(2) have CO2 permeances per pore lower than 10(-22) mol s(-1) Pa-1, and pores with separation factors of, similar to 10 have CO, permeances per pore between 10(-22) and 10(-21) mol s(-1) Pa-1. Finally, we show that a pore density of 10(14) m(-2) is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric materials. Moreover, we show that a higher pore density can potentially further boost the permeation performance of a porous graphene membrane above all existing membranes. Our findings provide insights into the potential and the limitations of porous graphene membranes for gas separation and provide an efficient methodology for screening nanopore configurations and sizes for the efficient separation of desired gas mixtures.
机译:由于其原子厚度,具有亚纳米孔尺寸的多孔石墨烯构成具有展示超高渗透的气体分离膜的有希望的候选者。虽然石墨烯孔可以极大地促进气体混合物分离,但目前没有验证的分析框架,其中可以通过给定石墨烯孔预测气体渗透。在这项工作中,我们使用分子动力学模拟模拟通过子纳米石墨烯孔的吸附气体的渗透,例如CO2和CH4。我们表明,天然气渗透通常可以分离成两个步骤:(1)气体分子对孔口的吸附和(2)气体分子的易位从石墨烯膜的一侧到另一侧的孔口到孔口。边。我们发现,可以使用Arrhenius型方程式表达易位率系数,其中能量屏障和预指数因子可以理解使用过渡状态理论进行经典障碍交叉事件。我们提出了在穿过孔隙穿过孔的预指数因素和熵障碍之间的关系。此外,在理论的基础上,我们提出了一种有效的算法来计算任何形状的子纳米石墨烯孔的每孔的CO2和CH4渗透。对于CO 2 / CH 4混合物,石墨烯纳米孔在CO(2)渗透和CO 2 / CH 4分离因子之间表现出折衷。通过该理论预测并描述了具有给定孔密度的选择性与渗透的罗伯森图上的这个上限。具有高于10(2)的CO2 / CH4分离因子的孔,每孔的CO 2渗透率低于10(-22)mol s(-1)pa-1,并且具有与10的分离因子的孔,同样为CO,渗透孔径在10(-22)和10(-21)mol s(-1)pa-1之间。最后,我们表明多孔石墨烯膜需要10(14)m(-2)的孔密度超过聚合物材料的渗透选择性上限。此外,我们表明孔密度较高可能进一步提高所有现有膜上的多孔石墨烯膜的渗透性能。我们的发现提供了对气体分离的多孔石墨烯膜的电位和限制的洞察,并提供了用于筛选纳米孔配置和尺寸的有效方法,以便有效地分离所需的气体混合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号