...
首页> 外文期刊>ACS nano >Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties
【24h】

Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties

机译:亚磷烯纳米孔的周期性阵列作为具有可调谐性质的反向物格

获取原文
获取原文并翻译 | 示例
           

摘要

A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.
机译:磷烯中的可调谐带隙延长了纳米电子和光电应用中的适用性。这里,我们建议通过图案化的反向物格来调节磷烯中的带隙,这是在材料中蚀刻的周期性的孔或纳米孔阵列,并通过利用相应的纳米细胞的量子限制。在由氧化物层保护的几层黑色磷薄片中,通过氧化物层保护的少数黑色磷薄片,并通过拉曼光谱观察到相对于未修饰的材料的面内声子模式的抑制。与石墨烯解对比,与预测的功率谱相一致,少层BP点解的拉曼峰位不变。我们还使用DFT计算来预测磷烯真实晶格的电子性质,并观察与量子限制效应一致的带隙缩放。偏差主要归因于自钝化的边缘形态,其中每种磷原子具有与原始材料的每种原子相同的键合,使得没有掺杂剂可以使悬浮键饱和。与扶手椅边缘相比,孔之间的锯齿形边缘纳米型纳米细胞较强的量子限制较强,从而产生大致双峰的带隙分布。有趣的是,在两个防辐射结构中,Z字形边缘的未报告的自钝化重建赋予系统具有金属部件。防辐射的实验证明和理论结果提供了进一步缩小了几纳米大小制度的纳米减压的动机,其中量子限制尤为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号