...
首页> 外文期刊>ACS nano >Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion
【24h】

Hot Carrier-Based Near-Field Thermophotovoltaic Energy Conversion

机译:基于热载体的近场炎热光伏能量转换

获取原文
获取原文并翻译 | 示例
           

摘要

Near-field thermophotovoltaics (NFTPV) is a promising approach for direct conversion of heat to electrical power. This technology relies on the drastic enhancement of radiative heat transfer (compared to conventional blackbody radiation) that occurs when objects at different temperatures are brought to deep subwavelength distances (typically <100 nm) from each other. Achieving such radiative heat transfer between a hot object and a photovoltaic (PV) cell could allow direct conversion of heat to electricity with a greater efficiency than using current solid-state technologies (e.g., thermoelectric generators). One of the main challenges in the development of this technology, however, is its incompatibility with conventional silicon PV cells. Thermal radiation is weak at frequencies larger than the similar to 1.1 eV bandgap of silicon, such that PV cells with lower excitation energies (typically 0.4-0.6 eV) are required for NFTPV. Using low bandgap III-V semiconductors to circumvent this limitation, as proposed in most theoretical works, is challenging and therefore has never been achieved experimentally. In this work, we show that hot carrier PV cells based on Schottky junctions between silicon and metallic films could provide an attractive solution for achieving high efficiency NFTPV electricity generation. Hot carrier science is currently an important field of research and several approaches are investigated for increasing the quantum efficiency (QE) of hot carrier generation beyond conventional Fowler model predictions. If the Fowler limit can indeed be overcome, we show that hot carrier-based NFTPV systems after optimization of their thermal radiation spectrum could allow electricity generation with up to 10-30% conversion efficiencies and 10-500 W/cm(2) generated power densities (at 900-1500 K temperatures). We also discuss how the unique properties of thermal radiation in the extreme near-field are especially well suited for investigating recently proposed approaches for high QE hot carrier junctions. We therefore expect our work to be of interest for the field of hot carrier science and by relying solely on conventional thin film materials to provide a path for the experimental demonstration of NFTPV energy conversion.
机译:近场炎热光伏(NFTPV)是一种直接将热量转换为电力的方法。该技术依赖于当不同温度下的物体被彼此深度的亚壳长度(通常<100nm)的物体被带到深度亚波长距离(通常<100nm)时发生的辐射传热(与传统的黑体辐射相比)的急剧增强。在热物体和光伏(PV)电池之间实现这种辐射热传递可以允许通过使用电流固态技术(例如,热电发电机)更大的效率将热量直接转换为电力。然而,这种技术的发展中的主要挑战之一是与常规硅PV电池不相容。热辐射在大于硅的类似1.1 eV带隙的频率下弱,使得NFTPV需要具有较低励磁能量(通常为0.4-0.6eV)的PV电池。使用低带隙III-V半导体来规避本限制,如大多数理论作品所提出的,都是具有挑战性的,因此从未实验过实现。在这项工作中,我们表明,基于硅和金属薄膜之间的肖特基交界点的热载波PV电池可以提供一种有吸引力的解决方案,用于实现高效的NFTPV发电。热载体科学目前是一个重要的研究领域,并研究了几种方法,以增加传统的幸福模型预测超出传统幸存流行发电的量子效率(QE)。如果确实可以克服福勒限制,我们表明在优化其热辐射谱后的基于热载体的NFTPV系统可能允许电力产生高达10-30%的转换效率和10-500W / cm(2)产生的功率密度(900-1500 K温度)。我们还讨论了极端近场热辐射的独特性质特别适用于研究最近提出的高QE热载体连接的方法。因此,我们希望我们的工作对热载体科学领域的兴趣感兴趣,并仅仅依靠传统的薄膜材料,为NFTPV能量转换的实验证明提供一条路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号