...
首页> 外文期刊>ACS nano >Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle
【24h】

Pervasive Genomic Damage in Experimental Intracerebral Hemorrhage: Therapeutic Potential of a Mechanistic-Based Carbon Nanoparticle

机译:实验性脑出血的普遍基因组损伤:基于机械基碳纳米粒子的治疗潜力

获取原文
获取原文并翻译 | 示例
           

摘要

Therapy for intracerebral hemorrhage (ICH) remains elusive, in part dependent on the severity of the hemorrhage itself as well as multiple deleterious effects of blood and its breakdown products such as hemin and free iron. While oxidative injury and genomic damage have been seen following ICH, the details of this injury and implications remain unclear. Here, we discovered that, while free iron produced mostly reactive oxygen species (ROS)-related single-strand DNA breaks, hemin unexpectedly induced rapid and persistent nuclear and mitochondrial double-strand breaks (DSBs) in neuronal and endothelial cell genomes and in mouse brains following experimental ICH comparable to that seen with gamma radiation and DNA-complexing chemotherapies. Potentially as a result of persistent DSBs and the DNA damage response, hemin also resulted in senescence phenotype in cultured neurons and endothelial cells. Subsequent resistance to ferroptosis reported in other senescent cell types was also observed here in neurons. While antioxidant therapy prevented senescence, cells became sensitized to ferroptosis. To address both senescence and resistance to ferroptosis, we synthesized a modified, catalytic, and rapidly internalized carbon nanomaterial, poly(ethylene glycol)-conjugated hydrophilic carbon clusters (PEG-HCC) by covalently bonding the iron chelator, deferoxamine (DEF). This multifunctional nanoparticle, DEF-HCC-PEG, protected cells from both senescence and ferroptosis and restored nuclear and mitochondrial genome integrity in vitro and in vivo. We thus describe a potential molecular mechanism of hemin/iron-induced toxicity in ICH that involves a rapid induction of DSBs, senescence, and the consequent resistance to ferroptosis and provide a mechanistic-based combinatorial therapeutic strategy.
机译:对脑出血(ICH)的治疗仍然难以实现,部分依赖于出血本身的严重程度以及血液和血红素和游离铁等血液的多种有害影响。虽然氧化损伤和基因组损伤已经看出,但这种伤害和影响的细节仍然不清楚。在这里,我们发现了,而自由铁产生多大多数反应性氧物质(ROS) - 相关的单链DNA断裂,血红素意外地诱导神经元和内皮细胞基因组和小鼠中的快速和持续的核和线粒体双链断裂(DSB)在实验性的血液之后与用γ辐射和DNA络合的化学疗法相媲美。由于持续的DSB和DNA损伤反应的结果,血红素也导致培养神经元和内皮细胞中的衰老表型。在神经元中也观察到在其他衰老细胞类型中报道的随后对枯枝瘤的抗性。虽然抗氧化治疗防止衰老,但细胞变得敏感到脱裂病变。为了解决衰老和抗性化抗性,通过共价键合铁螯合物,脱硫胺(Def),通过共价键合,合成改性,催化和快速的内化碳纳米材料,聚(乙二醇) - 缀合的亲水性碳簇(PEG-HCC)。这种多功能纳米粒子,DEF-HCC-PEG,来自衰老和裂解症的受保护细胞,体外和体内恢复核和线粒体基因组完整性。因此,我们描述了ICH中血红素/铁诱导毒性的潜在分子机制,涉及DSB,衰老和随后对硬质裂解的影响并提供基于机械的组合治疗策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号