...
首页> 外文期刊>ACS nano >Seeding the Self-Assembly of DNA Origamis at Surfaces
【24h】

Seeding the Self-Assembly of DNA Origamis at Surfaces

机译:在表面上播种DNA折簇的自组装

获取原文
获取原文并翻译 | 示例
           

摘要

Unlike supramolecular self-assembly methods that can organize many distinct components into designer shapes in a homogeneous solution (e.g., DNA origami), only relatively simple, symmetric structures consisting of a few distinct components have been self-assembled at solid surfaces. As the self-assembly process is confined to the surface/interface by mostly nonspecific attractive interactions, an open question is how these interfacial interactions affect multicomponent self-assembly. To gain a mechanistic understanding of the roles of the surface environment in DNA origami self-assembly, here we studied the oligonucleotide-assisted folding of a long single-stranded DNA (ssDNA scaffold) that was end-tethered to a dynamic surface, which could actively regulate the DNA-surface interactions. The results showed that even weak surface attractions can lead to defective structures by inhibiting the merging of multiple domains into complete structures. A combination of surface anchoring and deliberate regulation of DNA-surface interactions allowed us to depart from the existing paradigm of surface confinement via nonspecific interactions and enabled DNA origami folding to proceed in a solution-like environment. Importantly, our strategy retains the key advantages of surface-mediated self-assembly. For example, surface-anchored oligonucleotides could sequence-specifically initiate the growth of DNA origamis of specific sizes and shapes. Our work enables information to be encoded into a surface and expressed into complex DNA surface architectures for potential nanoelectronic and nanophotonic applications. In addition, our approach to surface confinement may facilitate the 2D self-assembly of other molecular components, such as proteins, as maintaining conformational freedom may be a general challenge in the self-assembly of complex structures at surfaces.
机译:与可以将许多不同组分组织成均匀溶液(例如DNA折纸)的设计者形状不同的超分子自组装方法不同,仅由一些不同的组分组成的相对简单的对称结构已经在固体表面上自组装。由于自组装过程主要由大多数非特异性互动局限于表面/界面,因此开放的问题是这些界面相互作用如何影响多组分自组装。为了获得对DNA折纸自组装中的表面环境的作用的机制理解,在这里,我们研究了将终止于动态表面的长单链DNA(SSDNA支架)的寡核苷酸辅助折叠折叠,这可以积极调节DNA表面相互作用。结果表明,即使弱的表面景点也会通过抑制多个结构域的合并成完全结构来导致结构缺陷。表面锚固和刻意调节DNA-表面相互作用的组合使我们能够通过非特异性相互作用从现有的表面禁闭范例和使DNA折纸折叠能够在溶液状环境中进行。重要的是,我们的战略保留了表面介导的自组装的关键优势。例如,表面锚定的寡核苷酸可以序列 - 特异性地引发特定尺寸和形状的DNA折簇的生长。我们的工作使信息能够被编码成表面并表达成用于潜在纳米电子和纳米光电应用的复杂DNA表面架构。此外,我们的表面限制的方法可以促进其他分子组分(例如蛋白质)的2D自组装,因为保持构象自由度可以是表面在表面的复杂结构的自组装中的一般挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号