...
首页> 外文期刊>ACS nano >Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound
【24h】

Wafer-Scale Fabrication of Micro- to Nanoscale Bubble Swimmers and Their Fast Autonomous Propulsion by Ultrasound

机译:微量到纳米级泡沫游泳运动员的晶圆规模制造及其超声波的快速自主推进

获取原文
获取原文并翻译 | 示例
           

摘要

Fuel-free, biocompatible swimmers with dimensions smaller than one micrometer have the potential to revolutionize the way we study and manipulate microscopic systems. Sub-micrometer, metallic Janus particles can be propelled rapidly and autonomously by acoustically induced fluid streaming, but their operation at acoustic pressure nodes limits their utility. In contrast, bubble-based microswimmers have an "on board" resonant cavity that enables them to operate far from the source of acoustic power. So far, they have been fabricated by direct writing techniques that limit both their minimum dimensions and the number that can be produced. Consequently, the size scaling of the properties of bubble swimmers has not been explored experimentally. Additionally, 3D autonomous motion has not yet been demonstrated for this type of swimmer. We describe here a method for fabricating bubble swimmers in large numbers (>10(9)) with sizes ranging from 5 pm to 500 nm without direct writing or photolithographic tools. These swimmers follow a previously proposed scaling theory and reveal useful phenomena that enable their propulsion in different modes in the same experiment: with magnetic steering, autonomously in 3D, and in frequency-specific autonomous modes. These interesting behaviors are relevant to possible applications of autonomously moving micro- and nanorobots.
机译:无燃料,具有小于一微米的尺寸的生物相容性游泳者具有促进我们研究和操纵微观系统的方式的潜力。亚微米,金属Janus颗粒可以通过声学诱导的流体流快速,自主地推进,但它们在声压节点处的操作限制了它们的效用。相比之下,基于气泡的微温具有“载板”共振腔,使得它们能够远离声学功率的源。到目前为止,他们是通过直接写入技术制造的,这些技术限制了它们的最小尺寸和可以产生的数字。因此,泡沫游泳运动员性质的大小缩放尚未通过实验探讨。此外,尚未对这种类型的游泳运动员进行3D自主运动。我们在此描述了一种制造大量(> 10(9))的泡沫游泳剂的方法,其尺寸范围为5pm至500nm而无需直接写入或光刻工具。这些游泳运动员遵循先前提出的缩放理论,并揭示了有用的现象,使其在同一实验中以不同模式推进的有用现象:磁力转向,自主地,3D,频率特异性自主模式。这些有趣的行为与自动移动的微型和纳米波特的可能应用有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号