...
首页> 外文期刊>ACS nano >An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing
【24h】

An Integrated Dielectrophoresis-Trapping and Nanowell Transfer Approach to Enable Double-Sub-Poisson Single-Cell RNA Sequencing

机译:一种集成的介电泳诱捕和纳米蜂窝转移方法,使双泊泊泊单细胞RNA测序能够实现

获取原文
获取原文并翻译 | 示例
           

摘要

Current technologies for high-throughput single-cell RNA sequencing (scRNA-seq) are based upon stochastic pairing of cells and barcoded beads in nanoliter droplets or wells. They are limited by the mathematical principle of the Poisson statistics such that the utilization of either cells or beads or both is no more than similar to 33%. Despite the versatile design of microfluidics or microwells for high-yield loading of beads that beats the Poisson limit, subsequent encapsulation of single cells is still determined by stochastic pairing, representing a fundamental limitation in the field of single-cell sequencing. Here, we present dTNT-seq, an integrated dielectrophoresis (DEP)-trapping-nanowell-transfer (dTNT) approach to perform cell trapping and bead loading both in a sub-Poisson manner to facilitate scRNA-seq. A larger-sized 50 mu m microwell array was prealigned precisely on top of the 20 mu m DEP nanowell array such that single cells trapped by DEP can be readily transferred into the underneath larger wells by flipping the device, followed by subsequent hydrodynamic bead loading and coisolation with transferred single cells. Using a dTNT device composed of 3600 electroactive DEP-nanowell units, we demonstrated a single-cell trapping rate of 91.84%, a transfer efficiency of 82%, and a routine bead loading rate of >99%, which breaks the Poisson limit for the capture of both cells and beads, thus called double-sub-Poisson distribution, prior to encapsulating them in nanoliter wells for cellular mRNA barcoding. This approach was applied to human (HEK) and mouse (3T3) cells. Comparison with a non-DEP-based method through gene expression clustering and regulatory pathway analysis demonstrates consistent patterns and negligible alternation of cellular transcriptional states by DEP. We envision the dTNT-seq device can be modified for studying cell-cell interactions and enable other applications requiring active manipulation of single cells prior to transcriptome sequencing.
机译:用于高通量单细胞RNA测序(SCRNA-SEQ)的当前技术基于纳米液体液滴或孔中的细胞和条形码珠的随机配对。它们受到泊松统计的数学原理的限制,从而利用细胞或珠子或两者的利用率不超过33%。尽管微流体或微孔的多功能设计,用于击败泊松极限的高屈服负荷,但随后的单细胞封装仍然通过随机配对来确定,代表单细胞测序领域的基本限制。这里,我们呈现DTNT-SEQ,一种集成的介电电泳(DEP) - 纳米孔 - 转移(DTNT)方法,以以亚泊松方式进行细胞捕获和珠子加载,以促进SCRNA-SEQ。更大尺寸的50μmmicrowell阵列是精确地在20μmdem nanowell阵列的顶部的顶部,使得通过dep被捕获的单个电池可以通过翻转装置而容易地转移到较大的孔中,然后随后的水动力珠载荷和与转移的单细胞的搭配。使用由3600个电活性DEP-NANOWELL单元组成的DTNT器件,我们证明了单细胞捕获率为91.84%,转移效率为82%,常规珠子加载速率> 99%,这会破坏泊松限制在将它们包封在纳米凝胶孔中的蜂窝mRNA条形码之前,捕获细胞和珠子,因此称为双泊泊松分布。该方法应用于人(HEK)和小鼠(3T3)细胞。通过基因表达聚类和调节途径分析与非DEP基方法的比较显示了通过DEP的一致模式和可忽略的细胞转录状态的交替。我们设想可以修改DTNT-SEQ设备以研究细胞 - 细胞相互作用,并使需要在转录组测序之前能够在转录组上进行单细胞的其他应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号