...
首页> 外文期刊>ACS nano >Self-Assembly of Topologically Networked Protein-Ti3C2Tx MXene Composites
【24h】

Self-Assembly of Topologically Networked Protein-Ti3C2Tx MXene Composites

机译:拓扑网络蛋白-TI3C2TX MXENE复合材料的自组装

获取原文
获取原文并翻译 | 示例
           

摘要

Hierarchical organization plays an important role in the stunning physical properties of natural and synthetic composites. Limits on the physical properties of such composites are generally defined by percolation theory and can be systematically altered using the volumetric filler fraction of the inorganic/organic phase. In natural composites, organic materials such as proteins that interact with inorganic filler materials can further alter the hierarchical order and organization of the composite via topological interactions, expanding the limits of the physical properties defined by percolation theory. However, existing polymer systems do not offer a topological parameter that can systematically modulate the assembly characteristics of composites. Here, we present a composite based on proteins and titanium carbide (Ti3C2Tx) MXene that manifests a topological network that regulates the organization, and hence physical properties, of these biomimetic composites. We designed, recombinantly expressed, and purified synthetic proteins consisting of polypeptides with repeating amino acid sequences (tandem repeats) that have the ability to self-assemble into topologically networked biomaterials. We demonstrated that the interlayer distance between MXene sheets can be controlled systematically by the number of tandem repeat units. We varied the filler fraction and number of tandem repeat units to regulate the in-plane and out-of-plane electrical conductivities of these composites. Once Ti3C2Tx MXene sheets are separated enough to facilitate formation of cross-links in our proteins with the number of tandem repeat units reaching 11, the linear I-V characteristics of the composites switched into nonlinear I-V curves with a distinct hysteresis for out-of-plane electron transport, while the in-plane I-V characteristics remained linear. This highlights the impact of synthetic protein templates, which can be designed to modulate electronic transport in composites both isotropically and anisotropically.
机译:分层组织在天然和合成复合材料的令人惊叹的物理性质中起着重要作用。这些复合材料的物理性质的限制通常通过渗透理论定义,并且可以使用无机/有机相的体积填充部分系统地改变。在天然复合材料中,诸如与无机填料相互作用的蛋白质的有机材料可以通过拓扑相互作用进一步改变复合材料的分层顺序和组织,从而扩展通过渗透理论定义的物理性质的限制。然而,现有的聚合物系统不提供可以系统地调节复合材料的组装特性的拓扑参数。在这里,我们介绍基于蛋白质和碳化钛(Ti3C2Tx)MXENE的复合材料,该胶合体表现出这些仿制组织的拓扑网络,并因此进行这些仿生复合材料的物理性质。我们设计了重组表达和由具有多肽组成的纯化合成蛋白,所述多肽具有重复氨基酸序列(串联重复),其具有自组装成拓扑网络化生物材料的能力。我们证明,MxEne板之间的层间距离可以通过串联重复单元的数量来系统地控制。我们改变填充物分数和串联重复单元的数量,以调节这些复合材料的平面内和平面外电导率。一旦Ti3C2TX MxENEs被分离,足以促进在我们的蛋白质中形成交叉链路,通过达到11的串联重复单元的数量,复合材料的线性IV特性切换成非线性IV曲线,具有不同的外平电子滞后。运输,而在线IV特性保持线性。这突出了合成蛋白模板的影响,这可以设计成调节复合材料中的电子传输,双方和各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号