...
首页> 外文期刊>ACS nano >Atomic-Scale Patterning of Arsenic in Silicon by Scanning Tunneling Microscopy
【24h】

Atomic-Scale Patterning of Arsenic in Silicon by Scanning Tunneling Microscopy

机译:扫描隧道显微镜通过扫描硅的原子尺寸图案化

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored. In this work, we demonstrate the successful fabrication of atomic-scale structures of arsenic-insilicon. Using a scanning tunneling microscope tip, we pattern a monolayer hydrogen mask to selectively place arsenic atoms on the Si(001) surface using arsine as the precursor molecule. We fully elucidate the surface chemistry and reaction pathways of arsine on Si(001), revealing significant differences to phosphine. We explain how these differences result in enhanced surface immobilization and in-plane confinement of arsenic compared to phosphorus, and a dose-rate independent arsenic saturation density of 0.24 +/- 0.04 monolayers. We demonstrate the successful encapsulation of arsenic delta-layers using silicon molecular beam epitaxy, and find electrical characteristics that are competitive with equivalent structures fabricated with phosphorus. Arsenic delta-layers are also found to offer confinement as good as similarly prepared phosphorus layers, while still retaining >80% carrier activation and sheet resistances of <2 k Omega/square. These excellent characteristics of arsenic represent opportunities to enhance existing capabilities of atomic-scale fabrication of dopant structures in silicon, and may be important for three-dimensional devices, where vertical control of the position of device components is critical.
机译:在过去的二十年中,通过使用扫描隧道显微镜和氢气光刻来制造未来经典和量子计算技术的原型设备,以用原子尺度精度将磷原子定位磷原子。尽管取得了这些成功,磷酸仍然是唯一具有与氢气光刻技术相容的供体前体分子。直到现在,替代掺杂物种的原子规模放置的潜在好处仍未探讨。在这项工作中,我们证明了砷insilicon原子尺度结构的成功制造。使用扫描隧穿显微镜尖端,我们使用胂作为前体分子选择性地将单层氢掩模选择性地将砷原子放置在Si(001)表面上。我们完全阐明了Si(001)的胂的表面化学和反应途径,揭示了与膦的显着差异。我们解释了与磷相比,这些差异如何导致砷的增强表面固定和面内限制,以及0.24 +/- 0.04单层的剂量率无关砷饱和密度。我们证明了使用硅分子束外延的成功封装砷δ层,并找到具有磷的等效结构竞争的电特性。还发现砷δ层提供与类似磷层一样好的限制,同时仍然保持> 80%的载体激活和薄层电阻的<2kΩsquar。砷的这些优异的特征代表了增强硅中掺杂剂结构的原子规模制造的现有能力的机会,并且对于三维器件可能是重要的,其中装置部件的垂直控制至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号