...
首页> 外文期刊>ACS nano >Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H-2 Production: Architecture-Performance Relationship in Bifunctional Multilayer Electrodes
【24h】

Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H-2 Production: Architecture-Performance Relationship in Bifunctional Multilayer Electrodes

机译:可定制的电催化5-羟甲基呋喃凝固和H-2生产:双功能多层电极中的建筑学性能关系

获取原文
获取原文并翻译 | 示例
           

摘要

Water electrocatalytic splitting is considered as an ideal process for generating H-2 without byproducts. However, in the water-splitting reaction, a high overpotential is needed to overcome the high-energy barrier due to the slow kinetics of the oxygen evolution reaction (OER). In this study, we selected the 5-hydroxymethylfurfural (HMF) oxidation reaction, which is thermodynamically favored, to replace the OER in the water-splitting process. We fabricated three-dimensional hybrid electrocatalytic electrodes via layer-by-layer (LbL) assembly for simultaneous HMF conversion and hydrogen evolution reaction (HER) to investigate the effect of the nanoarchitecture of the electrode on the electrocatalytic activity. Nanosized graphene oxide was used as a negatively charged building block for LbL assembly to immobilize the two electroactive components: positively charged Au and Pd nanoparticles (NPs). The internal architecture of the LbL-assembled multilayer electrodes could be precisely controlled and their electrocatalytic performance could be modified by changing the nanoarchitecture of the electrode, including the thickness and position of the metal NPs. Even with a composition of the identical constituent NPs, the electrodes exhibited highly tunable electrocatalytic performance depending on the reaction kinetics as well as a diffusioncontrolled process due to the sequential HMF oxidation and the HER. Furthermore, a bifunctional two-electrode electrolyzer for both the anodic HMF oxidation and the cathodic HER, which had an optimized LbL-assembled electrode for each reaction, exhibited the best full-cell electrocatalytic activity.
机译:水电催化分裂被认为是没有副产品的H-2产生H-2的理想过程。然而,在水分裂反应中,需要高度过电位来克服由于氧进化反应的缓慢动力学(oer)的高能屏障。在这项研究中,我们选择了5-羟甲基糠醛(HMF)氧化反应,其热力学偏爱,以替换在水分裂过程中的伊尔。我们通过层逐层(LBL)组件制造了三维杂化电催化电极,用于同时HMF转化和氢进化反应(她)来研究电极对电催化活性的纳米建筑学的影响。纳米化的石墨烯氧化物用作带负电的结构块,用于LBL组件,以固定两个电活性组分:带正电荷的Au和Pd纳米颗粒(NPS)。可以精确地控制LBL组装的多层电极的内部架构,并且可以通过改变电极的纳米建筑,包括金属NP的厚度和位置来改变它们的电催化性能。即使具有相同的组成NPS的组成,电极也表现出高度可调谐的电催化性能,这取决于反应动力学以及由于连续的HMF氧化和她的偏差进行扩散控制过程。此外,用于阳极HMF氧化和阴极的双功能两电极电解槽,其具有针对每种反应的优化的LBL组装电极,表现出最佳的全细胞电催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号